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I 
S CHARACTERIZATION OF DEFORMATION AND DAMAGE IN 

BRITTLE-MATRIX COMPOSITE MATERIALS 

I 
1. INTRODUCTION 

M    / The behavior of brittle-matrix composite materials is intimately related to the 

deformation and failure micromechanisms including their exact sequence and 

interaction. These in turn are related to the properties of the constituents, matrix, 

^ fiber and interface/interphase, as well as the processing residual stresses. 

1 w The micromechanics of stress transfer and fracture of brittle matrix composites 

■ has been studied experimentally and analytically by many investigators [1-17]. 

Under  longitudinal tension damage initiates with the development of multiple 

I matrix cracking, since the failure strain of the matrix is lower than that of the fiber. 

This is accompanied by partial debonding at the fiber-matrix interface and fiber 

fractures, which strongly depend on the properties of the interface. Most studies to 

date deal with longitudinal behavior of the unidirectional composite. Very few 

studies deal with behavior under transverse loading [10, 11, 18-20]. Although the 

I various failure mechanisms are known and understood their relative magnitudes, 

exact sequence and interaction and quantitative effect on the overall macroscopic 

behavior vary from case to case. The various analytical models proposed to date 

are deficient or incomplete or lack experimental substantiation. 

The objective of this investigation was to study the deformation and failure of 

■ brittle-matrix composite materials. Unidirectional and cross-ply continuous-fiber 

ceramic-matrix composites under uniaxial tension were investigated experimentally 

and analytically. The various tasks of this study are described below. 

I 
I 

I 
I 

I 
1 2. EXPERIMENTAL STUDIES of UNIDIRECTIONAL COMPOSITE 
" UNDER LONGITUDINAL TENSION [10-14, 21-24] 

I 
I 
I 

2.1     Macroscopic Characterization 

The  material  investigated is, a unidirectional  SiC/CAS,  calcium 

aluminosilicate glass ceramic (CAS, Corning Glass Works) reinforced with 



I 

I 
■» continuous silicon carbide fibers (Nicalon, Nippon Carbon Co.).   A typical 

■ transverse section of this material is shown in Fig. 1. Properties of the constituents 

are tabulated in Table 1. 

I Longitudinal, transverse and shear tests were conducted to characterize the 

macroscopic response of the composite material and determine its macroscopic 

mechanical properties. Typical stress-strain curves to failure in the longitudinal and 

H transverse directions are shown in Fig. 2.  The Difference between the ultimate 

properties in the two directions is extreme.  Additional tests were conducted to 

I determine the coefficients of thermal expansion. Results are tabulated in Table 2. 

The characteristic features of the longitudinal stress-strain curve are illustrated in 

m Fig. 3. The material initially behaves linearly elastically up to the proportional limit 

(point A). This is followed by a nonlinear region with decreasing stiffness up to 

the "bend over" point B. Then, follow a region BC of stabilized stiffness reduction 

I rate (or sometimes a plateau), another region CD of increasing tangential stiffness 

(strain hardening), and the terminal quasi-linear region DE. These characteristic 

■ features are obviously related to the microscopic failure mechanisms that develop 

■ during loading. 

I 2.2     Microscopic  Observations  [10-14] 

Failure mechanisms were studied by testing and observing specimens under 

■ the microscope (Fig. 4). The damage development scenario, observed directly in 

part and inferred in part, consists of the following (Fig. 5): 

1. Matrix crack initiation 

2. Crack propagation and fiber/matrix debonding 

3. Crack saturation 

I 

I 
I 
I 
I 
i 

4. Fiber fractures 

5. Ultimate failure 
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*L marm- ®J&* 

Fig. 1   Photomicrograph of a Typical Transverse Section of Unidirectional 
SiC/CAS Composite 

(Fiber diameter: range 8-20 |im, average 15 (im) 
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Table 1. Constituent Material Properties 

Property CAS Matrix* SiC Fiber? 

Maximum Use 
Temperature, °C (°F) 1350 (2460) 1300 (2370) 

Fiber Diameter (Jim) - 15 

i Density (g/cvaß) 2.8 2.6 

i 
i 
i 

Coefficient of Thermal 
Expansion, 
10-6/°C (HWF) 5.0 (2.8) 3.2 (1.8) - 4.9 (2.7) 

Elastic Modulus, 
GPa (106 pSi) 98 (14.2) 170 (24.6) 

i 
I 

Tensile Strength, 
MPa(ksi) 

124 (18) 
(flexural 1930(280) 

1   Larsen and Adams (1989) 

i 2  Prewo and Brennan (1982), Daniel et al. (1989) 

i 
i 
1 
i 
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Table 2. Measured Properties of SiC/CAS Unidirectional Composite 

Property Value 

m Fiber Volume Ratio, Vf 0.39 

• Ply Thickness, t, mm (in.) 0.38 (0.015) 

■ Longitudinal Modulus, Ei, GPa (Msi) 127 (18.4) 

Transverse Modulus, E2, GPa (Msi) 112 (16.2) 

| In-plane Shear Modulus, Gu, GPa (Msi) 52 (7.5) ~ 

m Out-of-plane Shear Modulus, G23, GPa (Msi) 32 (4.7) 

" Major Poisson's Ratio, v i2 0.18 

Longitudinal Tensile Strength, Fa, MPa (ksi) 448 (65) 

Transverse Tensile Strength, F2t, MPa (ksi) 28 (4) 

I Longitudinal Ultimate Tensile Strain, zau 9 x 10-3 

Transverse Ultimate Tensile Strain, s^t 2-5 x 10"4 

Longitudinal Coefficient of Thermal Expansion, 
ecu U£/°K (ji£/°F) 4.05 (2.25) 

Transverse Coefficient of Thermal Expansion, 
cc2, U£/°K (\L£J°F) 4.23 (2.35) 

I Out-of-plane Coefficient of Thermal Expansion, 
■ cc3, ue/°K (U£/°F) 4.32 (2.40) 

I 
I 
I 
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I 
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A: 
B: 
BC: 
CD: 
DE: 

Strain 

Proportional limit 
Bend-over point 
Plateau or low tangential stiffness region 
Region of increasing tangential stiffness 
Terminal reaion 

Fig. 3 Stress-Strain Curve of Unidirectional SiC/CAS Composite under 
Longitudinal Tension 
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I Matrix cracking was observed directly and recorded during loading (Fig. 6). 

Matrix crack density is plotted versus average strain and compared with the stress- 

strain curve in Fig. 7. This plot shows that matrix cracking starts very close to the 

■ proportional limit and its density varies nearly linearly with applied average strain 

up to a saturation level. This occurs at a strain of approximately 0.35 to 0.40% and 

I usually corresponds to a minimum crack spacing of seven to ten fiber diameters. 

Fiber/matrix debonding is very difficult to observe directly.   Indirect 

evidence of debonding, through ultrasonic and acoustic emission measurements, 

■ will be discussed below. Whenever fiber fractures were observed, they always 

occurred at some distance from the matrix cracks and most likely at the end of the 

■ debonded region (Fig. 8). This is further illustrated by the SEM fractograph of a 

failure surface (Fig. 9). 

I 
■ 2.3     Ultrasonic  Investigations  (21-23] 

Ultrasonic techniques were developed for real-time monitoring of damage 

■ evolution in a unidirectional ceramic matrix composite under longitudinal tensile 

loading. A schematic diagram of the testing system used is shown in Fig. 10. A 

pair of transducers is mounted in contact with the specimen and the through- 

transmission signals are monitored during loading. Two types of transducers were 

used, longitudinal (compression) wave and shear wave transducers. Wavespeeds 

I and attenuation corresponding to longitudinal and shear waves across the thickness 

(3-direction) of the specimen were determined and correlated with the macroscopic 

stress-strain behavior. 

The change in attenuation of the longitudinal and shear waves, polarized in 

the parallel to the fiber direction, as a function of applied average strain is shown in 

I Figs. 11 and 12 and compared with the corresponding stress-strain curve. 

Considering the previous microscopic observations of damage development, it 
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I 
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TYPICAL FIBER BREAKS 

-1* «ft- 

%&$gM&E* 

'* '.<,*.. 

Fig.   8      Typical Fiber Fractures Near Matrix Cracks with Fiber-Matrix Debonding 
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Fi<*.  9      SEM Fractograph of Failure Surface under Longitudinal 
Tension Illustrating Fiber  Breaks  and Pullout. 
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seems that the attenuation and wavespeed of the longitudinal wave are particularly 

sensitive to matrix cracking and relatively insensitive to fiber-matrix debonding. On 

the other hand, the attenuation and wavespeed of the transverse (shear) wave seem 

to be most sensitive to fiber-matrix debonding. All ultrasonic measures (attenuation 

and wavespeeds of longitudinal and shear waves) seem to respond to the last stage 

of damage development consisting primarily of fiber fractures. 

The attenuation and wavespeed of transverse shear waves, polarized in the 

normal to the fiber direction, were also measured and used to evaluate the extent of 

fiber-matrix debonding. The varying transverse shear modulus G23 can be 

determined from the measured wavespeed of the shear wave during the entire 

process of loading. In addition to the wavespeed the attenuation of the wave was 

measured and plotted in normalized form versus applied strain along with the stress- 

strain curve (Fig. 13). It is clear that the normalized signal loss starts at the point of 

matrix crack initiation and continuous at some moderate rate up to the strain 

hardening region. At that point, believed to be the region of extensive fiber-matrix 

debonding, the attenuation rate of the shear wave increases abruptly. 

2.4      Acoustic Emission Study of Failure Mechanisms [24] 

Acoustic emission techniques were used to monitor damage mechanisms 

and evolution in a unidirectional SiC/CAS ceramic composite under monotonic 

I longitudinal  tensile   loading.     In   addition  to  the  monotonic   loading, 

loading/unloading tests were performed. 

Three major types of damage were investigated; transverse matrix cracking, 

fiber-matrix interfacial debonding, and fiber fractures. Acoustic emission events 

were monitored in real time during loading and unloading and they were correlated 

■ with the corresponding stress-strain curves and microscopically recorded damage 

mechanisms. 

18 
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The test setup is shown in Fig. 14. The cumulative acoustic emission 

counts are plotted versus strain and compared with the stress-strain curve in Fig. 

15. The onset of AE corresponds to the proportional limit of the material.  The 

B     .' cumulative AE output increases linearly with applied strain up to the strain 

hardening region, which corresponds to extensive fiber-matrix debonding. At that 

| point, the cumulative AE rate increases abruptly for some time and then it drops to a 

lower rate up to ultimate failure. The cumulative AE counts were also compared 

with matrix crack density measurements (Fig. 16). The correspondence of the 

various features of the stress-strain, crack density and AE curves and their physical 

significance are illustrated in Fig. 17. 

■ The amplitude distribution of AE events and its relationship to the failure 

mechanisms were investigated. The variation of cumulative AE counts of various 

amplitude ranges with applied strain is shown in Figs. 18 and 19, and histograms 

of AE events of various amplitude ranges are shown in Fig. 20. It can be deduced 

that high amplitude signals correspond to matrix cracking in region ABC and level 

■ off at matrix crack saturation. It can also be deduced that the extensive debonding 

activity in region CD produces medium to lower amplitude signals. 

Several loading/unloading tests were conducted as shown in Fig. 21. Upon 

reloading, the material follows the stress-strain curve obtained under monotonic 

loading.  This shows that the loading-unloading process does not introduce any 

I additional damage. Stress and cumulative AE counts versus strain for some loading- 

unloading loops are shown in Figs. 22-24. These records show that AE increases 

up to the peak applied strain and no AE activity exists during unloading. 

Furthermore, upon reloading during the following loop, no significant AE output is 

produced until the previous peak strain has been exceeded, i.e., the material shows 

I the Kaiser effect. This behavior continues for successive loading-unloading loops 

up to the strain level corresponding to strain hardening or matrix crack saturation or 

I 
I 
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Strain 
gage 

Specimen(3"x0.25"x0.124") 

AE sensor 
(150 kHz) 

Preamp 

Load and 
stroke ß 

Locan-AT with TRA 

Extension box 

Fig. 14   Setup for Acoustic Emission Test 
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Fig. 16    Stress, Cumulative AE Counts, and Matrix Crack Density versus Strain 
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Fig. 17   Correspondence of Features and Physical Significance of 
Stress-Strain, Crack Density and AE Curves 
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I 
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I 
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extensive fiber-matrix debonding (region CD). When the corresponding strain level 

(approximately 0.5%) is reached during a loading-unloading loop (loop 6) an 

abrupt change in AE rate occurs (Figs. 25, 26). Furthermore, upon unloading 

additional AE output is recorded which is convincing proof of debonding and 

frictional sliding. The combined loading-unloading stress-strain loops and 

corresponding AE output are shown in Fig. 27. The above observations show that 

most of the debonding and sliding occur after matrix crack saturation. 

I 
I 
I 
I 
I 
I 

3. ANALYTICAL STUDIES OF UNIDIRECTIONAL COMPOSITE 

| 3.1     Shear Lab Model for Longitudinal Tension [12, 13, 14] 

A modified shear lag analysis started earlier was further extended and 

I refined. It is based on a cylindrical composite element containing a central fiber and 

two transverse matrix cracks. The basic assumptions of this analysis are that (1) 

the fiber and matrix are bonded initially and even after multiple matrix cracking, (2) 

■ the axial load carried by the matrix is proportional to the difference in average axial 

displacements of the matrix and fiber, (3) the variation of the shear stress in the 

I radial direction is linear in the fiber and inverse quadratic in the matrix, and (4) the 

influence of radial displacements in matrix and fiber are neglected. The stress level 

at crack initiation is given by 

aa = |L(Fmt-arm) (1) 

where 

I aa = applied stress in composite 

M Grm = residual axial stress in matrix 

» Fmt = matrix tensile strength 

■ Em = matrix modulus 

Ej = initial longitudinal modulus of composite (Ef Vf + Em Vm) 

I Ef  = fiber modulus 

Vf, Vm =  fiber and matrix volume ratios, respectively 
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I 
■ Thus, matrix cracking in the composite depends on the matrix tensile 

strength and the processing residual stresses. The average residual stresses in the 

fiber and matrix can be determined from the following equilibrium and continuity 

conditions (Fig. 28): 

CrmVm + arfVf = 0 (2) 

I 

I 
I 

For 

Crf 

Ef 
- |=-(am-«r)< 

■All 

AT = - 1000°c 

am = 5.0 x 10-6/0 C 

af = 4.0 x 10"6/° C 

■km = 98GPa 

Ef = 170 GPa 

Vm 
= 0.2 

Vf = 0.2 

tfrm 
= 52 MPa (7.5 ksi) 

(3) 

I 
I 
I 
I 
I 
I 
I 
I 
I 

The matrix strength Fmt that controls matrix cracking in the composite is the 

| "in-situ" strength which is different from the one measured in the bulk material. The 

in-situ matrix strength is best determined by recording the applied axial 

(longitudinal) stress in the composite at crack initiation, Gci, and using eq. (1). 

I Thus, for aa = cci = 100 MPa, (ym = 52 MPa, Em = 98 GPa and Ei = 127 GPa, 

m Em 
I Fmt   = 17 CTci + CT™ = 129 MPa (18.7 ksi) 

I 
I 

After crack initiation, microcracks propagate and combine to form a pattern 

of continuous transverse cracks with an average crack spacing / (Fig. 29). The 

analytical model in question gives the local stress distributions between two matrix 
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Fig. 28 Axial Residual Stress in the Matrix 
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Gf +AC 

axial stress 
in fiber 

interfacial 
shear stress 

axial stress 
in matrix 

Fig 29 Matrix Cracking and Local Stress Distributions in 
Unidirectional Brittle Matrix Composite under Longitudinal Tension 
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cracks [12 - 14]. Closed form expressions were given for the distributions of the 

axial stress in the matrix and fiber and the interfacial shear stress: 

OYnx — 
Em a. m '-'a + On 

coshl^- - ax) 

coshM)    J 

<3fx = 
Ef 1 + J^m *m 

coshl^- - ax) 

EfVf cos Hf) 
aa + 

'     coshl^- - ax 

2)   I 

\ 

\ 
cos 4f) 

C5rf 

2)    I 

sinnig - ax) 
X'(X)-    ZV,   ( E,    + <H    coshM) 

where 

^mx   — average axial stress in matrix 

<3fx     = average axial stress in fiber 

ti        = interfacial shear stress 

X         = axial coordinate measured from crack face 

/ crack spacing 

a2 2            Ei 

Arf     EfEmVm 

A = 
4Gf     Gm 

[2   Vfiif-rJ,      rf        x     rf(i+Vf)l 

3     (1-Vf)
21      fm       '        1-Vf 

Gf, Gm = fiber and matrix shear moduli, respectively 

rf, rm    = fiber and matrix radii in model, respectively 
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Crack spacing prior to any significant debonding could be obtained by 

setting 

Gm = Fmt at x = //2ineq. (4): 

2 Em <*a + El Crm 
/ =— cosh"1  

a Emaa+Ei(ann-FmO (7) 

The next failure mechanism accompanying or following matrix cracking is 

interfacial debonding (Fig. 30). A debond initiation criterion can be expressed in 

terms of a critical strain energy at the intersection of the matrix crack and the fiber or 

a "nominal" interfacial shear strength Fis. The latter may not correspond to an 

actual shear stress because of the singularity of the stress but it can be correlated to 

a similarly measured property, e.g., by means of pullout or pushout tests. Debond 

initiation then, could be predicted by setting the interfacial shear stress tj at x = 0 

in eq. (6) to F;s: 

Ti(0) 
arf Vm/Em oa \     , al 

= -TV7(-ET   HtanhT =   F: 
(8) 

where 

Tj (0) = maximum interfacial shear stress (at x = 0) 

F;s     = interfacial shear strength 

The corresponding crack spacing at debond initiation is calculated as 

ZH* =— tanh" 
a 

Fis m^^ (9) 
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7/^" ~" ~ ™* "^ 
%\ J   d = debonded length 

x 

t 
I = crack spacing 

111- m 

Fig. 30   Matrix Cracking and Debonding in Unidirectional 
Composite under Longitudinal Tensile Loading 
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Stress distributions following debonding have been proposed for the 

bonded and unbonded regions including the effects of residual stresses and 

interfacial friction as illustrated in Fig. 31. In the debonded area(o < x < d) 

2VfXfx 

°fx   = 
ca    2 Tf x 
Vf        ff 

ti = tf 

(10) 

(11) 

(12) 

where Tf = interfacial factional stress 

In the bonded area (d < x < / - d) 

o    -foe   is   U2VfTfd   EmG    g   \cosha(//2-x) amx - (Ei aa + cm] + j ^ rf    ^ aa  o^ cosh ^ /2 _ d) (i3) 

afx-(Ei o. + orfj + |Ei Vf aa  arf    ff jcosha(//2.d) (14) 

Ti = 
_arfVn 

2Vf 
oa f Orm 

Ei V^  rf 'm 

sinh q(/ /2 - x) 
cosh a{l 12 - d) (15) 

The extent of debonding can be calculated by setting 

Ti(d) = Fis (atx = d) (16) 

An explicit relation for the debond length d is obtained by neglecting friction: 

d-1 /-liogiii 
(17) 

where 

^ = 2Fis   Vf 

arf Vm Em aa + Ei an 
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Fig. 31    Axial Matrix Stress and Interfacial Shear Stress 
Distributions in Cracked and Partially Debonded Composite Element 
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The interfacial shear strength which controls debonding is difficult to determine. 

A determination of this strength has been proposed in relation to the matrix tensile 

strength by assuming debonding starts at matrix crack saturation, i.e., 

* di — * min 

Fis        Vm      arf OC/min 
  = — . — cotn  /IQ\ 
Fmt       Vf      2 4 (18> 

For the available material properties it is found that 

Fis = 179 MPa (26.0 ksi) 

which can be compared with microindentation test results for the same material 

[25]. 

Fis = 248 MPa (36 ksi) 

The longitudinal stress-strain behavior of the material was predicted based 

on the shear lag model discussed and using the material properties obtained. The 

result is shown in Fig. 32 where it is compared with the measured stress-strain 

I curve [22]. The agreement between the predicted and measured curves is good, at 

least up to the point of debond initiation. The deviation may be due in part to the 

fact that fiber fracture was not included in the analysis. I 
3.2 Interfacial Debonding and Transverse Shear Modulus 

I An attempt was made to calculate the transverse shear modulus G23 

throughout the loading history based on Eshelby's equivalent inclusion method and 

■ utilizing the debond length result from the shear lag model discussed before [26-28, 

23]. For perfect bonding between fibers and matrix the transverse shear modulus is 

predicted as: 

Gjj,= Gm(l-Vf) + G23f(3-4vm + Vf) 
Gm    Gm[l+(3-4vm)Vf] + G23f(3-4vm)(l-Vf) (19) 
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For the case of complete debonding, the transverse shear modulus G23 is 

given by [28]: 

G23 (1-V)cp 

Gm     (l-Vf)9+4x(l-vI2)Vf (2°) 

where 

cp = (l+vm)[l+2(l-vm)Q](l-Vf)2+[4R + (3-2v2-2vmVi2f)0j(l-Vf)Vf 

+ 4(l-vm)(l-v12fv21f)(2 + Vf)VfRQ 

R^     (l+vm)Elf 

4(l-Vi2fV2if)Em 

Q=      (l+Vm)E2f 
(l-Vi2fV2if)Em 

X = (l-Vf)2+T^[(l-Vmv12f)Q + 4{l-vmv12f)](l-Vf)VfR + i^ElfVf
2Q 

1 + Vm E,m 

In the case of partial debonding along the fiber direction, it is assumed that 

the fiber-matrix interface around the circumference of the fiber is completely 

debonded. The transverse shear modulus is then calculated by linear interpolation 

of the moduli for the cases of perfect bonding and complete debonding, i.e., 

n„ -r,° I -2d + Gx 2d 
^23   -  ^23 j— + ^23 -J~ 

or (21) 

G2I = (l. G23| 2d 
G2°3      \      G2

0
3/ 

l 

where the debond length d is calculated from eq. (17). The predicted shear 

modulus G23 is plotted versus applied strain and compared with the value obtained 

from wavespeed measurements of shear waves in Fig. 33. The agreement is as 

reasonable as can be expected. 
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Conversely, the ultrasonically determined shear modulus G23 can be used in 

conjunction with the relation given above to calculate the debond length d as a 

function of applied average strain. 

3.3  Numerical Studies of the Effects of Interphases in 
Unidirectional Composites  [29] 

A fiber with a reduced interphase stiffness contained in a unidirectionally 

fiber reinforced composite gives rise to higher stresses at its interphase as well as at 

the interphases of neighboring fibers. For a hexagonal array composite, detailed 

I numerical results were presented.   Three cases were investigated: (1) perfect 

composite, (2) perfect composite which contains a single fiber with lower 

interphase stiffness, (3) perfect composite which contains a single fiber with 

interphase cracks and lower interphase stiffness. Micromechanical stress 

distributions at the interfaces of the dissimilar fiber and its neighboring fibers were 

■ calculated by the use of the boundary element method for an hexagonal array 

composite subjected to either transverse tensile or compressive uniaxial loading. 

The effects of fiber-matrix interphases on the micro- and macro-mechanical 

properties of unidirectionally fiber-reinforced composites were also studied for 

composites subjected to transverse shear loading. The interphases were modeled 

■ by the spring-layer model which accounts for continuity of tractions, but allows 

radial and circumferential displacement jumps across the interphase that are linearly 

related to the normal and tangential tractions. Numerical calculations in basic cells 

were carried out using the boundary element method. For the isothermal case the 

results display the effects of variation of interphase stiffness on the fields of stress 

I and deformation and on the effective elastic constants for square array and 

hexagonal array composites with and without interphase failure. 

The effects of fiber-matrix interphases and fiber volume ratio on the micro- 

and macro-thermomechanical behavior of unidirectionally fiber-reinforced square 
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and hexagonal array composites were also studied for the case of uniform 

temperature variation (cooling). Numerical calculations in basic cells were carried 

out using the boundary element method. 

3.4  Cylinder Deformation Model 

A new model was investigated to remedy the deficiencies of the shear lag 

model (see Appendix for details). The same cylindrical element between two matrix 

cracks was analyzed as before (Fig. 34). A form of the displacements in the fiber 

and matrix was assumed to satisfy axial symmetry and zero shear strain at the outer 

cylinder boundary. A set of governing equations was obtained by applying the 

principle of virtual work. These equations refer to a unit cell between two matrix 

cracks with a crack opening displacement (COD) and debonded regions at the ends 

(Fig. 35). 

Considering the periodicity of matrix cracks, the governing equations can be 

integrated to yield the following nonlinear damage-strain relations: 

' (l-rj^COEW^ 

2^/dCODj/Rf 

bll   b12 

b2i b22 

i -Hi 

£2 + v12 oi 
Ei 

(22) 

where 

bll = 

bn = - 

1 | ftvf-Vm^ftl+VfXl-vJ/Gf     A 
l-VfVm l-VfVm        \Gm        / 

(l_f)(vf_vm) 

l-vfv f vm 

b21 = 

b22   = 

f(Vf~Vm) fVm(l+Vf)/Gf \ 

l-VfVm 2(l-VfVm)'Gm ' 

i   (l_f)(vf-vm)   (i_f)(i+vm)(l-2vi) 

l-vfv f vm 2(l-vfvm) 
1- 

Gf 
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I cylinder displacements: u(z), w(z), /c(z) 

cylinder stresses: N1f N2, S, M1f M2 

cylinder strains: c1f e2,7, q1} q2 

Mo 

Ni 

Mi 

_ z 

K(2) 

» 

u^r.z) 

w(z) u(z) ur(r,z) 
uo 

r 
0 Rf Rm 

» 

Fig. 34   Cylindrical Element of Fiber and Matrix and 
Assumed Form of Displacements 

I 
50 



I 
I 
I 
I 
I 

C0Dm/2 

Fig. 35   Unit Cell Between Matrix Cracks Illustrating 
COD and Debonding 
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Ei      =      longitudinal elastic modulus of undamaged composite. 

Vi      =      major elastic Poisson's ratio of composite. 

<ji      =      average longitudinal stress in composite. 

81, £2   =      average longitudinal and transverse strains in composite, respectively. 

Gm, Gf =      matrix and fiber shear moduli, respectively. 

vm, Vf =      matrix and fiber Poisson's ratios, respectively. 

f        =      fiber volume ratio. 

CODm =      matrix crack opening displacement. 

CODj   =      interface crack opening displacement. 

Relations (22) can be used to predict the transverse strain e2 in terms of the 

longitudinal strain ij. Assuming that the fiber and matrix remain in contact, i.e., 

COD; = 0 

then, 

°1 b21   /-       CT1 \ 
e2 + vi2— = -Ü-   ei-^- 

Ej D22 \        Ei / (24) 

or 

where 

n/ n/     n/ 
£    = — v     e fc2 V12      1 

e    =   e2 + v12 r=r- = nonlinear component of transverse strain 1 Ei 

e?  =   8,   -    -=^- = nonlinear component of longitudinal strain 

v12 = -—   = "Poisson's ratio" relating nonlinear components of strain 
b22 

The nonlinear components of the strains are illustrated in Fig. 36. 

Substituting the known properties of the constituents and the composite and the 
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Strain, c, (%) 

Fig. 36   Stress Strain Curves of Unidirectional SiC/CAS Composite 
under Longitudinal Tension 
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measured öi - £1 longitudinal stress-strain relationship in eq. (24), one obtains the 

transverse strain I2. This predicted transverse strain agrees perfectly well with the 

one measured directly (Fig. 37). 

The model development up to this point does not entail failure criteria. It 

simply relates a given state of damage (matrix cracking) to the average 

(macroscopic) stresses and strains in the composite. It makes use only of linear 

elasticity with the appropriate boundary and interface conditions. 

Future work of this model will introduce failure criteria for matrix cracking 

and fiber/matrix debonding, residual stresses and interfacial friction. The hoped for 

result will be a comprehensive model capable of predicting damage evolution and 

the complete stress-strain curves to failure as a function of physical and 

experimentally measurable parameters. 

4. FAILURE   MECHANISMS   AND   DAMAGE   EVOLUTION   IN 
CROSSPLY LAMINATES  [30]. 

■ The problem of crossply laminates has been studied extensively for polymer- 

matrix composites.   The primary failure mechanism in these composites is 

M transverse matrix cracking in the 90° layer reaching a limiting crack density. This is 

m followed by longitudinal matrix cracking in the 0° layers, local delaminations at the 

™ intersections of matrix cracks and, finally, fiber fractures in the 0° layer leading to 

to ultimate failure, Daniel et al. [31]. In the case of brittle-matrix composites the type, 

sequence and interaction of failure mechanisms are different and characteristic of the 

I constituent material properties.  Some experimental work on crossply ceramic- 

^ matrix composites has been reported by Sbaizero and Evans [32].  They tested 

■ symmetric [0/90]s SiC/LAS laminates in tension and bending. However, the 

observed failure modes were not easily explained. Subsequent work on crossply 

laminates dealt with a fracture mechanics model of a delamination crack formed at 
1 
I 
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the tip of a notch cutting through 0° and 90° layers, see Sbaizero et al. [33] and 

Charalambides [34]. Mall and Kim [35] also conducted experimental investigations 

of failure mechanisms in SiC/CAS laminates. They observed that initial failure 

consisted of matrix microcracks occurring and growing in all plies in a random 

t manner. 

In the present work a systematic investigation was conducted of the failure 

M mechanisms, their growth and interactions in a crossply SiC/CAS laminate under 

uniaxial tension [30]. It represents the first systematic experimental/analytical study 

■ 0f a crossply laminate with brittle matrix. Previous experimental work mentioned 

before reported random or other edge dominated failure mechanisms with no clear 

trends. The failure mechanisms observed and recorded in the present study are 

substantially different from those reported before and show a clear and systematic 

trend. The initial stages of failure in each layer are interpreted on the basis of the 

failure micromechanics of the unidirectional material under longitudinal and 

transverse loading. The interaction of failure mechanisms in the 0° and 90° layers 

and the later stages of damage are explained on the basis of classical lamination 

theory as well as on damage models available for crossply laminates. The various 

failure mechanisms and damage states were correlated with the overall mechanical 

behavior of the laminate. The main contribution of this work lies in the integration 

of the micromechanics of brittle matrix single layers and the macromechanics of a 

J crossply laminate in predicting and interpreting the type and sequence of failure 

mechanisms and their interaction. 

Crossply specimens were loaded under the microscope and the various 

Jfl failure mechanisms, their sequence, interaction and overall damage development 

were observed in real time and recorded. 

■ The first stage of damage development consists of microcracks in the 90° 

laver   which then develop into transverse macrocracks (Fig. 38).    These 
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(a) 

(b) 

Fig. 38 Development of Failure Mechanisms in Transversely Loaded 
Ceramic Matrix Composite 

(a) Initial Radial Cracks Around Closely Packed Fibers 
(b) Initial Radial Cracks Around Isolated Fibers 
(c) Interfacial Cracks, and 
(d) Interconnection of Radial and Interfacial Cracks and 

Formation of Macrocracks 
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I 
* macrocracks increase in density up to a saturation limit, with a minimum crack 

ft spacing approximately equal to the 90° layer thickness.  Thereafter, transverse 

matrix cracks are generated in the 0° layer (Fig. 39). These cracks also increase in 

I density up to a minimum crack spacing of approximately eight fiber diameters. In 

^ the third stage of damage development there is an interconnection of the two sets of 

* cracks. Several of the denser 0° layer cracks connect with each of the 90° layer 

M cracks in a delta-like pattern (Fig. 40). This is finally followed by delaminations 

and additional cracking in the 90° layer prior to ultimate failure. 

M Damage development was correlated with the macroscopic stress-strain 

response of the unidirectional material under longitudinal and transverse loading 

and of the crossply laminate. It was noticed that first-ply failure in the 90° layer 

occurs at a higher layer stress than the transverse tensile strength of the 

unidirectional material. This may be attributed to the constraining effects of the 0° 

layer which tend to increase the in-situ transverse tensile strength of the 90° layer. 

Following crack saturation in the 90° layer, cracking initiated and increased 

in the 0° layers at approximately the same strain levels where similar cracking was 

\m observed in the unidirectional material under longitudinal loading. However, the 0° 

layer stresses at the various stages of damage development, were higher than 

corresponding stress levels in the 0° unidirectional specimen for the same damage. 

This was explained as a stiffening or strengthening effect of the 0° layers caused by 

the attached 90° layer. Ultimate failure of the laminate clearly showed the 

synergistic effects of the 0° and 90° layers of the laminate. 

Damage development in the 90° layer was compared with analytical 

predictions. A model developed previously for crossply graphite/epoxy composites 

was used to predict cracking in the 90° layer and stiffness degradation, both in the 

I 90° layer and in the overall laminate. The predictions were in very good agreement 

with experimental observations. 
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Fig. 39    Matrix Cracking in 0°-Ply Following Saturation of Cracking in 90°-Ply 
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Fig. 40     Interconnection of 0°-Ply and 90°-Ply Macrocracks 
(Formation of "Delta" Pattern) 
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The various failure mechanisms and the entire process of damage evolution 

were correlated with the macroscopic stress-strain curve of the crossply laminate as 

shown in Fig. 41. The effects of the various failure mechanisms on stiffness 

degradation is illustrated. 

It was shown that the overall damage development is characterized by 

different scales at different stages. The relevant scales are fiber diameter and fiber 

spacing for failure initiation in the 90° layer; layer thickness for damage saturation in 

the 90° layer; and fiber diameter for matrix cracking in the 0° layer. Finally, there is 

a scale crossing phenomenon in the interaction between the damage in the 90° and 0° 

layers. 

5. PUBLICATIONS AND PRESENTATIONS 

Reprints of selected papers published or presented during the reporting 

period are included in the appendix. 
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ABSTRACT: Acoustic emission (AE) measurements were correlated with macroscopic 
stress-strain behavior and direct microscopic observations of damage mechanisms in a 
unidirectional ceramic matrix composite under longitudinal tensile loading. Matrix crack 
initiation and the onset of AE events correspond to the proportional limit of the material. 
Both the crack density and cumulative AE counts vary linearly up to the point of crack sat- 
uration Thereafter follows a "strain hardening" region corresponding mainly to fiber- 
matrix debonding and manifested by an increase of low to moderate amplitude AE activity 
and leveling off of high amplitude AE signals. At higher strains, beyond the "strain harden- 
in*" region there are two characteristic parts in the AE output, one related to further 
damage (possibly debonding and fiber fracture) and the other clearly related to interfacial 
factional sliding. Upon unloading further AE output related to sliding is observed. AE ac- 
tivity of low to intermediate amplitude continues in the last stages of loading and is 
believed to be associated with fiber fractures. 

KEY WORDS: ceramic-matrix composites, failure mechanisms, damage, acoustic emis- 
sion, cracking, debonding, SiC/CAS composite. I 

■ INTRODUCTION 

rf^HE BEHAVIOR OF brittle-matrix composite materials is intimately related to 
IX the deformation and failure micromechanisms including their exact sequence 

and interaction. These in turn are related to the properties of the constituents, 
matrix, fiber and interface/interphase, as well as the processing residual stresses. 
It is generally agreed that the possible failure mechanisms under longitudinal ten- 
sile loading are matrix cracking, fiber-matrix debonding and sliding, fiber frac- 
ture and pullout [1-10]. The relative magnitude, the exact sequence and quantita- 
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tive effect of these failure mechanisms on the overall behavior of the material vary 
from case to case. The randomness of fiber spacing and the statistical variability 
of constituent properties cause the various failure mechanisms to span certain 
ranges of applied strain during the loading process [11]. 

Matrix cracking and some fiber fractures have been observed directly by reflec- 
tion light microscopy during loading [5-7]. However, optical observation of fiber 
matrix debonding is very difficult. Ultrasonic techniques were developed for 
monitoring of fiber matrix debonding in conjunction with an analytical model 
[9]. The need exists to complement and confirm previous observations and con- 
clusions by different techniques. 

The objective of this study was to apply acoustic emission (AE) techniques for 
detection and characterization of damage mechanisms and damage development 
in unidirectional ceramic matrix composites under longitudinal tension. Acoustic 
emission results were correlated with direct microscopic observations and the 
macroscopic stress-strain behavior of the material. 

EXPERIMENTAL PROCEDURE 

The material investigated was unidirectional SiC/CAS, calcium aluminosilicate 
glass ceramic reinforced with silicon carbide fibers (Nicalon). The specimen was 
obtained from Corning Glass Works in the form of a 3.12 mm (0.123 in.) thick, 
16-ply unidirectional plate. The average fiber diameter is approximately 15 fim, 
and the fiber volume ratio of the composite is 0.40. The specimens were cut into 
76 x 3.2 mm (3 x 0.124 in.) coupons and tabbed with glass/epoxy (Scotchply) 
for testing. The surface of the specimen was polished for microscopic obser- 
vations. 

Figure 1 illustrates schematically the loading fixture designed for loading spec- 
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Figure 1. Setup for microscopic observation of failure mechanisms in composite specimens 

under load. 
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imens under a reflection microscope [5-7]. Loading was applied and controlled 
by a pneumatic cylinder and recorded by a load cell. The specimen was in- 
strumented with strain gages so that the stress-strain behavior was continuously 
recorded while the specimen was observed on the surface by a CCD camera and 
recorded on video tape. The matrix crack density at various applied stress levels 
was then easily determined from the video records after the test was finished by 
measuring the average spacing between matrix cracks. 

Additional specimens were prepared and loaded in a servohydraulic testing 
machine (Instron). These specimens were instrumented with strain gages to 
record the stress-strain behavior, while the acoustic emission output was moni- 
tored concurrently with a 150 kHz AE sensor attached to the specimen (Figure 
2). Acoustic emission data in the form of cumulative counts (hits) above a prede- 
termined threshold were recorded and processed by a system incorporating a ded- 
icated computer and a transient record analyzer (Locan-AT with TRA, Physical 
Acoustics Corp.). Some of the specimens were loaded up to failure in a con- 
tinuous fashion while others were tested under a number of loading-unloading 
cycles with increasing maximum load. 

RESULTS AND DISCUSSION 

Monotonie Loading 

Results of the macroscopic stress-strain behavior, matrix crack development 
and acoustic emission output were obtained, analyzed and correlated. Typical 
photomicrographs showing the development and multiplication of matrix crack- 
ing are shown in Figure 3. The crack density (number of cracks per unit length) 
was measured from such photomicrographs and, after normalizing it (by multi- 
plying by five times the fiber diameter), it was plotted versus applied strain in 
Figure 4. It was found that matrix cracking occurred primarily in the 0.1-0.4% 
strain range. Superimposed in Figure 4 is a typical stress-strain curve to failure 
under longitudinal tensile loading. This curve displays several characteristic 
features which are related to the failure mechanisms and the failure process as 
will be discussed later. Figure 5 shows the acoustic emission output in the form 
of cumulative AE counts plotted versus applied strain. Superimposed for refer- 
ence is the same stress-strain curve of Figure 4. 

The various characteristics and measured parameters of the above results were 
correlated over five different regions of the loading history (Figure 6). In the ini- 
tial region, the stress-strain curve is linear up to the proportional limit A (a = 97 
MPa, e = 0.073%). In this region no apparent AE activity was recorded and no 
matrix cracking was observed. As the load is increased, the stress-strain curve 
becomes slightly nonlinear because of the stiffness degradation resulting from 
matrix cracking (region AB, a = 97-213 MPa, e = 0.073-0.20%). Several ini- 
tial microcracks of typical length equal to one to two interfiber distances were 
observed in this region. Acoustic emission output started in this region and in- 
creased linearly. 

The characteristic "bend-over point" B, is followed by a region BC of reduced 
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F/oure 3. Multiplication of transverse matrix cracking in unidirectional SiC/CAS composite 
under longitudinal tension, (a) a = 25.7 ksi, e = 0.15%, (b) a = 28.3 ks,, e = 23<>/o, (c) 
a = 32.3 ksi, e = 0.31%. 
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but stabilized tangential stiffness (a = 213-252 MPa, e = 0.20-0.36%). In this 
region the matrix microcracks extend into macrocracks and increase in number 
throughout the gage section of the specimen. Both crack density and cumulative 
AE counts increase at a constant rate up to a point C where the matrix cracking 
is saturated (a = 252 MPa, e = 0.36%). The minimum crack spacing at this 
saturation point is approximately ten fiber diameters. 

The following region CD (a = 252-306 MPa, e = 0.36-0.52%) is one of in- 
creasing tangential stiffness or a "strain hardening" region. Although matrix 
cracking appears to be saturated, increased AE output at a higher rate appears. 
It is believed that this AE activity is related to fiber-matrix debonding and/or slid- 
ing occurring in this region as indicated by ultrasonic measurements and analysis 

The terminal region DE (o = 306-433 MPa, e = 0.52-0.86%) is character- 
ized by a gradually decreasing stiffness due to fiber fractures and pullout. AE ac- 
tivity continues at a reduced but stabilized rate. 

The amplitude distribution of AE events and its relationship to the failure 
mechanisms were investigated. The variation of cumulative AE counts of various 
amplitude ranges with applied strain is shown in Figure 7, and histograms of AE 
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events of various amplitude ranges are shown in Figure 8. It is seen that matrix 
cracking, which is the primary failure mechanism in region ABC, produces a 
broad band of AE activity. However, the highest amplitude signals (> 75 dB) oc- 
cur only in this region and cease at point C, the crack saturation level (Figure 6) 
Following crack saturation, middle to low amplitude events increase at increased 
rates over the "strain hardening" region CD. These results suggest that fiber- 
matrix debonding and sliding, the dominant failure mechanism in region CD, 
produce AE signals of lower amplitude but longer duration. In the final region 
DE the AE events of low to moderate amplitude are significantly fewer than m re- 
gion CD while high amplitude signals (70-74 dB), begin to appear again. This 
phenomenon could be explained by the fact that fiber fractures produce high 
amplitude signals of narrow pulse width but few in number. 

Loading-Unloading 
In addition to the continuous loading tests, loading-unloading tests were con- 

ducted. Figure 9 shows that the envelope of the loading-unloading stress-strain 
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curves matches the monotonic stress-strain curve. This implies that the loading- 
unloading process produces no significant additional damage in the material. 
Figures 10(a)-10(d) show cumulative AE count curves along with the corre- 
sponding stress-strain curves for the various loading-unloading loops. Figure 11 
shows the records for all loops combined. It is noted that in the region below 
point C, or the first four loops of loading-unloading, no AE output is produced 
during unloading and reloading up to approximately the previous peak loading. 
This confirms the classical Kaiser effect and also implies that no significant 
debonding/sliding exists before saturation of matrix cracking. Any frictional slid- 
ing during unloading would produce additional AE counts. 

In the "strain hardening" region CD where fiber-matrix debonding is believed 
to be dominant, the AE count rate increases during loading, but no activity is 
recorded during unloading (loops 4 and 5). 

In regions beyond point D (loops 6,7 and final loading) a pronounced abrupt re- 
duction in AE count rate occurs during loading. The AE output continues in- 
creasing at a slightly reduced rate during the initial stage of unloading. This AE 
activity during the last stage of loading and the initial stage of unloading (in loops 
6 and 7) is attributed to frictional sliding in the debonded fiber-matrix interface. 
The characteristic rate change in AE counts in the loading curves of loop 7 and 
final loading step occurs at a strain equal to the peak strain reached in the pre- 
vious loading. It, seems that the two parts of AE output, the increasing rate part 
and the reduced constant rate one, demonstrate separate and independent Kaiser 
effects. The first part of the AE output is believed to be associated with further 
debonding and/or fiber fractures whereas the second part is primarily due to fric- 
tional sliding. 
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Figure 9. Continuous loading and loading-unloading stress-strain curves for unidirectional 
SiC/CAS composite under uniaxial tension. 
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Figure 10 (continued). Stress and cumulative AE counts versus strain for loading and 
unloading of unidirectional SiC/CAS composite under longitudinal tension. 
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Figure 10 (continued). Stress and cumulative AE counts versus strain for loading and 
unloading of unidirectional SiC/CAS composite under longitudinal tension. 
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Figure 10 (continued). Stress and cumulative AE counts versus strain for loading and 
unloading of unidirectional SiC/CAS composite under longitudinal tension. 
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Figure 7 7. Stress and cumulative AE counts versus strain for loading and unloading of 
directional SiC/CAS composite under longitudinal tension. 

uni- 

SUMMARY AND CONCLUSION 

A correlation was made between macroscopic stress-strain behavior, acoustic 
emission measurements and direct microscopic observations of damage develop- 
ment in unidirectional SiC/CAS composites. Dominant damage mechanisms in 
different loading stages were identified by the correlation. 

Under monotonic tensile loading matrix crack initiation and onset of AE events 
correspond to the proportional limit of the stress-strain curve. The matrix crack 
density and the cumulative AE counts vary linearly with strain through the 
nonlinear region between the proportinal limit and the beginning of the "strain 
hardening" region. At this point matrix cracking reaches a saturation level and 
the high amplitude AE activity levels off while the low to intermediate amplitude 
AE rate increases. The latter AE activity occurring over the "strain hardening" 
region is believed to be associated with fiber-matrix debonding. 

In the case of loading-unloading cycles it is noted that the material demon- 
strates the Kaiser effect for loadings below the matrix crack saturation point. 
Beyond this point, increasing fiber-matrix debonding and fiber fractures produce 
changes in the AE rate and deviations from the Kaiser effect. 

At higher strain levels beyond the "strain hardening" region an abrupt reduction 
is noticed m AE rate accompanied by further AE output during the initial stage 
of unloading. This characteristic behavior is attributed to frictional sliding during 
loading and unloading in the debonded fiber-matrix interfaces. 

It was shown in this study that acoustic emission is a useful tool for studying 
the failure mechanisms of composite materials. For complete identification of 
failure mechanisms, all three kinds of damage should be observed: matrix crack- 
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ing, fiber-matrix debonding, and fiber fracture, of which the matrix cracking and 
fiber fracture are directly observable by the microscopic investigation. In the 
absence of reliable and practical methods for direct observation of debonding, 
AE is a good alternative method that provides indirect information about fiber- 
matrix debonding. 
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Real-time ultrasonic techniques were developed for monitoring damage in a unidirectional ceramic-matrix composite 
under longitudinal tensile loading. Specifically, shear-wave transducers producing waves polarized in the transverse to the 
fiber direction were used in contact with the specimen to detect the initiation and propagation of fiber-matrix debonding, 
and to determine the transverse shear modulus and its degradation. The ultrasonically measured transverse shear modulus 
and its degradation was in reasonably good agreement with a prediction based on a modified shear lag model and 
interpolation between available solutions for fully bonded and fully unbonded fibers. 

1. Introduction 

Ceramic-matrix composites are receiving 
greater attention because of their potential use at 
high temperatures. Composites consisting of a 
ceramic matrix reinforced with high strength 
fibers have substantially higher strength, higher 
ultimate strains, better fracture toughness and 
ductility than comparable monolithic-matrix ma- 
terials. These materials are attaining strengths of 
1400 MPa (200 ksi) and ultimate strains of over 
1%. Typical composites include silicon-carbide 
matrix reinforced with silicon-carbide fiber 
(SiC/SiC) and glass ceramics reinforced with sili- 
con-carbide fibers, such as SiC/LAS (silicon car- 
bide/ lithium aluminosilicate) and SiC/CAS 
(silicon carbide/calcium aluminosilicate); see 
Brennan and Prewo (1982), and Prewo and Bren- 
nan (1982). 

Correspondence to: Prof. I.M. Daniel, Theoretical and Ap- 
plied Mechanics, Robert R. Mc Cormick School of Engineer- 
ing and Applied Science, Northwestern University, Center for 
Quality Engineering and Failure Prevention, 327 Catalysis 
Building, 2137 North Sheridan Road, Evanston, IL 60208- 

3020, USA. 

The macroscopic behavior of the material is 
intimately related to the constituent properties 
(fiber, matrix and interphase), the micromechan- 
ics of stress transfer between the constituents, 
and the failure mechanisms and their develop- 
ment under load. The micromechanics of stress 
transfer and fracture of brittle matrix composites 
has been studied analytically by many authors; 
e.g., Achenbach and Zhu (1989), Aveston et al. 
(1971), Aveston and Kelly (1973), Greszczuk 
(1969), Hsueh (1988), Lee and Daniel (1992), 
Marshall et al. (1985), McCartney (1989), Stang 
and Shah (1986). Although the various failure 
mechanisms are known, their relative magnitude, 
exact sequence and quantitative effect on overall 
behavior vary from case to case. 

Failure mechanisms have been observed in 
real time by Marshall and Evans (1985) and 
Daniel et al. (1989a, 1989b, 1992), but the obser- 
vations must be made under the microscope and 
are limited to the surface only. Furthermore, 
some mechanisms, such as fiber-matrix debond- 
ing, are very difficult to observe. There is a need 
to bridge the microscopic and macroscopic obser- 
vations by means of nondestructive monitoring of 
internal damage. The ability to monitor damage 

0167-6636/94/S07.00 © 1994 - Elsevier Science B.V. All rights reserved 
5SD/0167-6636(93)E0081-C 
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development during loading without interrupting 
the test is very important because the specimen 
must be loaded monotonically to failure at a 
controlled loading rate. Wooh and Daniel (1992) 
demonstrated that ultrasonic methods can be used 
to monitor damage evolution in real time. Ultra- 
sonic measurements of attenuation and velocity 
of longitudinal and transverse waves were mea- 
sured and correlated qualitatively with failure 
mechanisms. 

Of the properties involved, the fiber-matrix 
bonding condition plays an important role on the 
mechanical behavior of the composite. For exam- 
ple, if the bonding is too weak, stresses are trans- 
ferred poorly. On the other hand, if the bonding 
is very strong, the material behaves like a mono- 
lithic brittle one. Fiber-matrix debonding under 
stress is a sensitive indicator of material response 
and thus it is important to investigate it nonde- 
structive^. 

This paper describes an ultrasonic technique 
for real-time monitoring of fiber-matrix debond- 
ing and a correlation between the ultrasonically 
measured transverse shear modulus and an ana- 
lytical prediction. 

2. Theoretical background 

The material investigated was a unidirectional 
SiC/CAS composite, calcium aluminosilicate 
glass ceramic reinforced with silicon carbide 
fibers. Figure 1 illustrates a typical longitudinal 
stress-strain curve and corresponding failure 
mechanisms for this material. The curve shows 
four primary regions of interest. The initial re- 
gion of the curve (A) is the linear elastic range 
where virtually no damage could be found. This 
linear region extends at least up to the level 
where the matrix stress or strain reaches the 
ultimate value of the matrix tensile strength or 
fracture strain. The initial longitudinal modulus 
of the composite is obtained by the rule of mix- 
tures: 

E^EjV. + E^, (1) 

where £f, Em are the moduli of the fiber and 

n. 
< 

A/ 

B^-—= 

c/ 

IX/ 

/             Fiber fracture 

lnterfacial debonding 

Initiation of matrix cracks 

... 

Strain, e 

Fig. 1. Schematic illustration of stress-strain curve and failure 
mechanisms of unidirectional SiC/CAS composite. 

matrix and Vf, Vm are the fiber and matrix vol- 
ume ratios, respectively. Assuming the ultimate 
matrix strain to be lower than that of the fiber, 
the stress level at matrix crack initiation is given 
by the relationship 

o-, T~ ( -fmt _ ^n 
£m 

,). (2) 

where Fmt is the matrix tensile strength and a^ 
is the axial residual stress in the matrix. 

Following crack initiation and propagation 
across the specimen section, accompanied by 
fiber-matrix debonding, the curve tends to bend 
to a plateau or reduced stiffness region B corre- 
sponding to crack multiplication and further 
fiber-matrix debonding. In the middle of this 
region (C), matrix cracking becomes saturated 
while debonding continues. The curve enters re- 
gion D as the interfacial debonding is saturated. 
Fiber fractures are observed somewhere in this 
range of stress and the material finally fails glob- 
ally. 

Figure 2 illustrates schematically a damaged 
material with matrix cracking and partial debond- 
ing near the crack tips. If the crack spacing (/) 
and debond length (d) are given, the transverse 
shear modulus G23 can be determined for the 
given applied stress by using a micromechanics 
approach based on Eshelby's equivalent inclusion 
method (see Eshelby, 1957; Mori and Tanaka, 
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1973; Takahashi and Chou, 1988). An isotropic 
matrix with transversely isotropic ellipsoidal in- 
clusions is considered. 

Assuming small displacements, the relation- 
ship between stress (<r/;) and strain (e,;) tensors 
for a generally anisotropic material is expressed 
in the form 

°if; - Cijklekl> 

or 

= 5:,-t,o-. ijklukt> 

(3) 

(4) 

where Cijkl is the stiffness tensor. The effective 
elastic compliances of the composite 5,;/t/ are 
obtained by considering the work done under the 
applied stress o-,7: 

SukMjVki = SukPijVki + vicrii€*. (5) 

where S™kl is the matrix elastic compliance and 
e* is the solution of the following simultaneous 
equations: 

C™qmn[emn + (1 - VMT^et, - O] 

= Cf
pqmn[emn + (1 - V()Tmnkle^ + V(e*n] 

(6) 

where C™qmn and Cf
pqmn are the stiffnesses of the 

fiber 
matrix 

-+ +" 
->x 

matrix and fiber, respectively, and Tmnkl is known 
as Eshelby's tensor. 

For the case of perfect bonding between fiber 
and matrix, the transverse shear modulus G?3 is 
obtained by substituting 

<r23===°'32= !> 

all other atj = 0, into Eq. (5): 

Gm(l-Kf)+G23C(3-4„m + Kf) 

Gm[l + (3-4^m)Ff]+G23f(3-41,m)(l-Kf) (7) 

where  vn Gm>   G23f are the matrix Poisson's 
ratio, matrix shear modulus, and transverse shear 
modulus of the fiber, respectively. Subscripts 2 
and 3 denote the transverse in-plane and trans- 
verse out-of-plane directions, respectively. 

For the case of complete debonding, the trans- 
verse shear loading is replaced by the equivalent 
tension and compression at 45° with the direction 
of shear. Using the same equations as above for 
this case we obtain shear modulus G\3 as: 

G\ 23 (l-Vt)6 

Gm      (l-JW + 4*(l-i£)Kf' 
(8) 

2 

,&" ->1 

/ 

1 

1               1 

1 

Fig. 2. Composite element with matrix cracking and partial debonding. 
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Q 

x(l-Vf)V{R + ■EuVfQ- 

In the case of partial debonding along the 
fiber direction, it is assumed that the fiber-ma- 
trix interface around the circumference of the 
fiber is completely debonded. The transverse 
shear modulus is then calculated by linear inter- 
polation of the moduli for the cases of perfect 
bonding and complete debonding, i.e., 

o l~2d        i G23 
= G23—] 1" G23 

2d 

T (9) 

or 

G23 

G% 
= 1-1 

G1 
23 

G23 

(10) 

This approach is valid when the crack spacing 
is sufficiently smaller than the characteristic di- 
mension of the ultrasonic sensor to be discussed 
below. 

The ratio of debond length to crack spacing 
(d/l) is obtained from a modified shear lag anal- 
ysis model proposed by Lee and Daniel (1992). 

2d            1       1+i 
— = 1 log  

/ ß      l-£ 
(11) 

£ = 

and 

f) = 
M 

where .   where 

* = (l + "m)[l +2(1-02] 

x(l-V()
2+[4R + (3-2vl-2vmvm)Q] 

x(l-Kf)Kf + 4(l-0 

X(l -^i2f^2lf)(2+ Kf)Kf7?Q, 

R O + O^f 
4(1 -VnfV2U)Em' 

(l+"Jg2f 

(1 -^12f"21f)£m' 

r-O-W' + TTT 
X[(l-"m^i2f)0 + 4(l-^m^12f)] 

1- 

2Fh 

M(T,
2
-1) Ema,+ Exan 

(12) 

H\- + 

H- 

E{     Em(r,i-1))' 

1 (3r7 + l)(77-l)  ' 
+ 

4Gf 3(77 + l)2Gn 

in which rf is the fiber radius, ax is the applied 
stress, <rrm is the axial residual stress in the ma- 
trix, Fis is the interfacial shear strength, and £f, 
Em, Gf, and Gm are the Young's moduli and 
shear moduli of the fiber and matrix, respectively. 

Wooh and Daniel (1991) measured the five 
elastic constants of a transversely isotropic unidi- 
rectional laminate by means of ultrasonic wave 
propagation tests. Determination of G23 is exper- 
imentally much simpler than that of the other 
constants. For a plane wave, the displacements 
are given as 

"m=£7.nexP[*Kn/*«-cO]. (13) 

where k is the wave number, j is the unit imagi- 
nary number, n, are the direction cosines of the 
normal to the wave front, Um is the displacement 
amplitude, and c the wavespeed. Substituting Eqs. 
(3) and (13) into the equation of motion yields the 
eigenvalue equation and noting that a nontrivial 
solution exists when the determinant vanishes, 
the following determinantal equation is obtained 

|Q;*/"/"y-pc2S,j| = 0, (14) 

where 8,; is the Kronecker delta and p is the 
density of the material. The stress-strain rela- 
tionship for orthotropic materials is expressed in 
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terms of nine independent elastic constants, that 
is: 

0-33 

OV3 
) = 

c 
-11 C12 cl3 0 0 0 

'12 C22 C23 0 0 0 

'13 C23 C33 
0 0 0 

0 0 0 C44 0 0 

0 0 0 0 C55 0 

0 0 0 0 0 Q 66 

/, 

where the so-called Christoffel stiffnesses rtj are 
given by 

rn = n2
lCn+nlC66 + n2

3C55, 

f22 — n\C(,6 + nlßn + "3^44» 
e33 

723 

731 

1712J 

(17) 

(15) 

where [Cu] is the stiffnes matrix, subscripts 1, 2, 3 
denote the principal material axes, and y,7 are 
the engineering shear strains. Then, Eq. (14) takes 
the form 

Ai3 = "lC55 + "2C44 + "3C33> 

ri2 = n1n2(C12 + C66), 

* 23 = n2nA^-2i "*" ^-44)' 

r13 = «3/i1(c13 + c55). 

By setting the directional cosines for a wave 
motion traveling in the thickness direction xit 

i.e.. 

rtj = /i2 = 0   and    «3= 1, (18) 

det 

ru-Pc 12 r 13 

A2 

A3 

T22 ~ pC' 

23 

A3 

r33-pc'- 

0, 

three distinct solutions for c are obtained. Of 
these, the solution of interest is the one related 
to the transverse shear modulus, that is 

(16) G23 — C44 — pc23, (19) 

A 

Grip 

Yi 1 
Load controller 

Strain 
Signal conditioner 

Transmitter 

/J 

Receiver 

Digital oscilloscope 

Micro-computer 

\ 

Arbitrary function generator 

 ___!  

Power amplifier 
L 

V 
Fig. 3. Schematic block diagram of the ultrasonic system. 
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where c23 is the velocity of the shear wave polar- 
ized in the plane transverse to the fiber direction. 
Fiber-matrix debonding with a surface normal 
transverse to the wave propagation direction af- 
fects the transverse shear modulus degradation 
which is related to the corresponding wavespeed. 

3. Experimental procedure 

The material investigated was a unidirectional 
SiC/CAS, calcium-aluminosilicate glass ceramic 
reinforced with silicon-carbide fibers, manufac- 
tured by Corning Glass Works. The fiber is sili- 
con-carbide yarn known as Nicalon (Nippon Car- 
bon Co.) of 15 fim average diameter. The com- 
posite was obtained in the form of 16-ply, 3.048 
mm (0.12 in) thick unidirectional plates. 

Unidirectional coupons, 3.05 mm (0.12 in) 
thick, 17.27 mm (0.68 in) wide, and 15.24 cm (6 
in) long, were prepared. They were tabbed with 
2.54 cm (1 in) long glass/epoxy tabs and instru- 
mented with strain gages on both sides. The 
specimens were loaded in a servohydraulic testing 
machine while applied' stress and strains (both 
longitudinal and transverse strains) were moni- 
tored and recorded. Meanwhile, a pair of ultra- 
sonic shear wave transducers were tightly at- 
tached to the surfaces of the sample for ultra- 
sonic characterization. These transducers were 

Transmitter    Specimen    Receiver 
(A) (B) (C) 

.  1 

*   2 

_   n 
■    vJ 

set up in through-transmission mode and they 
were aligned to generate a shear wave polarized 
perpendicular to the fiber direction. A micro- 
computer was used to control the entire process 
of load control and data acquisition. A 10 MHz 
toneburst signal generated by an arbitrary func- 
tion generator (LeCroy 9100) excited the trans- 
mitter after passing through an RF power ampli- 
fier (ENI 325LA). Then, the transmitted multiple 
echoes were recorded by a digital oscilloscope 
(Tektronix RTD710) running at a sampling rate 
of 200 MHz (5 ns intervals). Figure 3 shows a 
schematic diagram of the ultrasonic test system 
used. As soon as all mechanical and ultrasonic 
measurements were completed, the specimen was 
immediately loaded to the next step and this 
procedure was repeated until global failure of the 
specimen. 

4. Wavespeed measurements 

Wavespeeds were measured from the wave 
traces of the transmitted and multiple echoes in 
the material as illustrated in Fig. 4. Figure 5 is a 
typical as-obtained waveform. The wavespeed is 
simply 

c = 2h/\t, (20) 

Gates:   1     2     3 

Before loading 

After loading 

Gates:    1 2        3 

Fig. 4. Transmitted signals and multiple echoes for measurement of wavespeed and attenuation. 
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c 
3 1.0 

£> 
CO 0.5 

XI 
b- 
CO 0.0 

<U 

1 ■0.5 

D. -in 
b 
-f 

-l.i 
0 

VI 160 

C 140 
3 

& 120 
co 

100 
J2 

CO 80 

60 
3 .~ 40 
C 
Oil 
CO 20 s 

0 

(a) 

1.0 1.5 
Time, r, (^sec) 

(b) 

7     8     9     10    11    12    13    14    15 
Frequency,/, (MHz) 

. 4000 

(c) 

0.0     0.5 3.5     4.0 1.0     1.5     2.0     2.5     3.0 
Quefrency, r, (/isec) 

Fig. 5. Illustrative example of cepstrum analysis for measuring 
wavespeed: (a) as-obtained waveform; (b) magnitude spec- 
trum; and (c) magnitude cepstrum. 

where Af is the time interval between echoes and 
h is the specimen thickness. The time interval can 
be directly obtained in the time domain by mea- 
suring the time interval between two correspond- 
ing peaks of two consecutive echoes because the 
signal used is a single frequency toneburst. How- 
ever, it is not desirable to measure the wavespeeds 
in this manner since it is sometimes difficult to 
locate the right peaks and the complex algorithm 

for automated testing increases the chance of 
introducing errors. 

An alternative approach is to determine the 
wavespeed based on ultrasonic interference spec- 
troscopy (see Chang et al., 1974; Wooh and 
Daniel, 1991). In this method, the obtained wave- 
forms fit) are expressed in the frequency do- 
mains as 

F(<o) = f   /(T) exp( -jtor) dr, .(£1) 

by means of fast Fourier transform (FFT) (see 
Brigham, 1988). The relatively low periodicity of 
the echoes compared to the frequency of the 
ultrasonic wave produces well defined anti-reso- 
nance dips and peaks in the frequency spectrum 
as shown in Fig. 5b. The period of these dips or 
peaks directly gives the time interval Af. One of 
the advantages of this method is that the dips 
appear even when the echoes interfere with each 
other, that is, this technique is useful even for 
very thin laminates. However, because of the 
many different situations, the algorithm of search 
for the local minima is computationally complex. 
The method of fails in a noisy environment, espe- 
cially in a case when the specimen has severe 
internal damage and the signal-to-noise ratio be- 
comes low. 

To solve this problem, the so-called cepstrum 
analysis was used (see Childers et al., 1977; Wooh 
and Daniel, 1992). The above-mentioned spec- 
trum is considered as another time series. Taking 
the FFT of the magnitude spectrum yields a 
spectrum of the spectrum called magnitude cep- 
strum which is back in the time domain: 

g{t)=f \F(a>)\exp(-jat) dt. (22) 

The time in the cepstrum is called quefrency and 
since the interferences in the magnitude spec- 
trum are periodic, the maximum amplitude oc- 
curs at the quefrency t = Ar in the magnitude 
spectrum as illustrated in Fig. 5c. The algorithm 
for determining a time delay becomes much sim- 
pler because one needs to simply find a maximum 
amplitude and its absolute location in the que- 
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frency domain. Wavespeeds are then calculated 
from Eq. (20). 

A drawback of this method is that it is compu- 
tation intensive because one needs to perform 
the Fourier transformation twice for each loading 
step. Fortunately, modern computers are capable 
of handling such a task in real time. 

5, Attenuation measurements 

Attenuation is another important parameter 
indicating damage in the material. Although we 
do not have an analytical solution for attenuation, 
it can be measured and correlated with the inter- 
nal damage. In contrast to the transverse 
wavespeed, the attenuation is sensitive to matrix 
cracking as well. The amplitudes of the first three 
echoes in Fig. 4 are: 

Ax = KA0TABTBCO, 

A2 = KA0TABTBCRBCRBAn\ (23) 

A3 = KA0TABTBCR2
BCRIAü

5, 

where K is the sensitivity of the receiving trans- 
ducer, A0 the amplitude'of the incident signal, 
ancl ?AB> ^BC -^BA> -^BC 

are tne transmission and 
reflection coefficients at the front and back sur- 
faces of the specimen, respectively. The signal 
loss Ü is then expressed by solving the above 
equations: 

n = k1A1 = k: 
A, 1/2 

1/2 1/2 

= *, 
A, 

= k. (24) 

The attenuation can be expressed as the sum of 
the initial attenuation (a0; no damage) and the 
attenuation due to damage (ad): 

Therefore, 

20        / n 
*d = a-a0=-Tlog10(- 

20 
= -ylog10<?, 

(25) 

(26) 

where the relative signal loss q is 

A,  _(   A2/Ax 

(A})0     [(A./A,), 

1/2 

A3/A2 

(A3/A2)0 

1/2 
A3/A, 1/2 

(27) 

Subscript zero means initial reference stage be- 
fore loading. One can select any two echoes to 
calculate the attenuation, but it is more desirable 
to pick the echoes that correspond to the longest 
travel in order to minimize measurement errors. 

Amplitudes of the individual wavelets were 
measured by introducing an imaginary gate on 
the waveforms and finding peak-to-peak values 
within the gate (Fig. 4). The location of the gate 
is recalculated by the wavespeed measurement so 
that the gate follows the corresponding wavelets. 

6. Results and discussion 

Some properties of the matrix and fiber con- 
stituents obtained from the literature and from 
tests are tabulated in Table 1 (Larsen and Adams, 
1988). The unidirectional composite was mechan- 
ically characterized and the results are shown in 
Table 2. 

As discussed before, the method used here is 
valid when the debond length is sufficiently 
smaller than the characteristic dimension of the 
ultrasonic transducer. In the present case, the 
diameter of the transducer used was 25.4 mm (1 

Table 1 
Constituent material properties 

Property CAS SiC 
matrix fiber 

Maximum use temperature, 1350 (2460) 1300 (2370) 
°C (°F) 

Fiber diameter, u.m _ 15 
Density, g/cm3 

2.8 2.6 
Coefficient of thermal expansion, 5.0 (2.8) 3.2(1.8) 

10-6/°C (iO-6/°F) 
Elastic modulus, GPa (Msi) 98 (14.2) 170(280) 
Tensile strength, MPa (ksi) 124 (18) 

(flexural) 
1930(280) 



I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

S.C. Wooh and I.M. Daniel / Fiber-matrix debonding 387 

Table 2 
Measured properties of SiC/CAS unidirectional composite 

Property Value 

0.39 (A 

0.38 (0.015) O 

125 (18.1) c 

112(16.2) M 

52 (7.5) a 
0.18 cd 

393 (57) O z 
55(8) 
0.0084 
0.0005 

Fiber volume ratio, V( 

Ply thickness, mm (in) 
Longitudinal modulus, Eu GPa (Msi) 
Transverse modulus, E2, GPa (Msi) 
In-plane shear modulus, G12, MPa (Msi) 
Major Poisson's ratio, vl2 

Longitudinal tensile strength, Flt, MPa (ksi) 
Transverse tensile strength, F2t, MPa (ksi) 
Longitudinal ultimate tensile strain, e", 
Transverse ultimate tensile strain, e". 

in) which is approximately 160 times the mea- 
sured minimum crack spacing (160 u.m). Figure 6 
shows the predicted and measured variation of 
the transverse shear modulus G23 due to induced 
debonding during loading. It shows qualitatively 
that the modulus is degraded as debonding grows. 
However, from the quantitative point view, the 
experimental curve shows some deviation from 
the prediction. The experimentally measured rate 
of degradation is more uniform than the pre- 
dicted one. This disagreement could be attributed 
to the neglect of the frictional stress between the 
fiber and matrix. The friction prevents the sud- 
den propagation of debonding immediately after 
initiation resulting in the less steep curve in this 
region. The agreement is better in the last part of 

8.0 

.O 7.5 
to 

o 6.5 
c/i 
3 
3 6.0 
•a o 
E 5.5 

£ 5.0 

S4.5 
u 

c 40 

c- 3.5 

3.0 

V\           : Measured 

■ ■! - : ! ! vkx: ! I  
Predicted     \  \, 

-0.2      -0.1      0.0       0.1       0.2       0.3       0.4       0.5       0.6       0.7       0.8 
Strain, e, (%) 

Fig. 6. Change in transverse shear modulus due to debonding 
during loading. 

-0.2     -0.1      0.0      0.1      0.2      0.3      0.4      0.5      0.6      0.7      0.8 
Strain, e, (%) 

Fig. 7. Change in normalized signal loss due to induced 
damage during loading with superimposed stress-strain curve. 

the curve corresponding to more extensive 
debonding. 

Figure 7 shows the change in normalized ultra- 
sonic signal loss due to induced damage during 
loading as a function of applied strain. The atten- 
uation shows a good qualitative correlation with 
previously observed failure mechanisms and with 
the associated stress-strain curve. The point of 
initial change in signal loss coincides exactly with 
the proportional limit. 

In summary, ultrasonic methods were devel- 
oped for real-time monitoring of damage evolu- 
tion in ceramic composites under tensile loading. 
The transverse shear modulus calculated from 
wavespeed measurements can be used as a sensi- 
tive indicator of fiber-matrix debonding. Ultra- 
sonic attenuation shows good qualitative agree- 
ment with damage and the combination of atten- 
uation and wavespeed would be a useful method 
to study failure mechanisms. Future studies 
should include the effects of residual stresses and 
the friction between fiber and matrix for a better 
prediction of material behavior. 
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Abstract-A reduced in.erphase stiffness of a single fiber (the dissimilar fiber) in a unidirectional^ 
feinforced composite gives rise to stress deviations in its own in.erphase, as well as m he interphases 
o neighbo ing'fibers, relative to «he stresses in a perfect composite. For transverse loading and an 
a b"  a y c ostsectional distribution of the fibers, a general method is presented to calculate these 
tre   demons, based on solutions by the boundary element method o boundary Integra eotiatio 

for the dissimilar fiber and neighboring fibers. In this method nearest and     x^n   ^^™ 
taken into account The interphases are represented by the spring layer model. Detailed numerical 
esuks a e P eTt d for the special case of a hexagonal array composite. Results are compared for 
a claüons taking into account nearest and next-nearest neighbors. Stresses a. the matrix.sidestof 

SSterphases and energy densities in the interphases have been ca.cu^'>-^ "* 
and for the next-nearest neighbors. These stresses have also been obtained lor the case that the 

dissimilar fiber has interphase flaws. 

INTRODUCTION 

The overall mechanical properties and the strength of fiber-reinforced composites are 
significantly affected by the properties of very thin layers at the fiber-matnx interfaces i.e. 
by fiber-matrix interphases. Several authors have investigated the effects of interphase 
compliance and interphase flaws on the effective elastic constants of the composite material. 
In these studies interphases have generally been represented by the spnng-layer model In 
this model the interphases are treated as very thin zones of unspecified thickness. The radial 
and tangential tractions are continuous across the interphase, but the displacements may 
be discontinuous between fiber and matrix due to the presence of the interphase. It has 
generally been assumed that the tractions are proportional to the corresponding dis- 
placement discontinuities. The proportionality constants characterize the stiffness of the 
nterphase. This "spring-layer model" has been employed by many authors .s g. Benven.se 
(1985) Steif and Hoysan (1987), Hashin (1990) and Achenbach and Zhu (1989). Benveni te 
1985)'calculated the effective modulus of a composite reinforced by spherical particles 

which are not well bonded to the matrix. Steif and Hoysan (1987) used an energy method 
for calculating the longitudinal stiffness of aligned short-fiber composites with imperfectly 
bonded interfaces. Hashin (1990, 1991) used the spring interphase model in his analysis ot 
the thermoelastic behavior of a fiber reinforced composite as well as that of a particula te 
composite He (1992) applied extremum principles of the theory of elasticity to composite 
bodies to obtain simple bounds for the effective elastic properties of two-phase materials 
with imperfect interfaces. Jasiuk et al. (1992) have investigated the eftect of a sliding 
interface on the elastic properties of composites with randomly distributed circular and 
spherical rigid inclusions. Recently, Gosz et al. (1992) obtained the transverse constitutive 
response of a hexagonal array composite using a combined analyt.cal and numerical 

mCthThe effect of interphase flaws and radial matrix cracks on the overall mechanical 
properties has been studied by Achenbach and Zhu (1989, 1990) and Achenbach and Choi 
(1991) These investigations have been carried out for periodic arrays of the fibers such as 
rectangular and hexagonal arrays, and it has been assumed that interface flaws and matrix 
cracks have the same periodic distribution as the fibers. By virtue of these geometrical 

1555 
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simplifications it was possible to consider a basic cell for detailed calculations of the fields 
of stress and deformation. 

In this paper the more general case is considered of a single fiber which has either a 
smaller interphase stiffness, or whose interphase contains a defect. All the other fibers have 
the same interphase properties. The stress deviations in the interphases generated by the 
presence of the dissimilar fiber are calculated and relevant stresses and deformation energy 
densities in the interphases of the composite with the dissimilar fiber are compared with the 
corresponding quantities in the perfect composite. This work generalizes an earlier study 
by Zhu and Achenbach (1991). The approach used in this paper is applicable for linearly 
elastic behavior of the fibers and the matrix. 

FORMULATION 

Figure 1 shows a cross-sectional view of a unidirectionally reinforced fiber-composite 
in which all fibers are of the same radius a and have the same interphase properties, except 
one: the dissimilar fiber. This fiber has different interphase stiffness properties including 
the possibility that all or part of the interphase may have zero stiffness, i.e. the fiber may 
be completely or partially debonded. It is assumed that at a remote location the composite 
is subjected to uniform normal stresses Paa and Qa0 in the x and y directions, respectively. 
The fibers are labelled by the index "q", where the index "0" is used to identify the dissimilar 
fiber, and where roughly speaking the larger the value ofq, the larger the distance from the 
dissimilar fiber. The circumference of fiber q is denoted by Tr A large contour Tm is the 
boundary of an area of interest of the cross section shown in Fig. 1. Inside r«, there are 
N+1 fibers. Thus q = 0, 1, 2,..., N. 

Following earlier papers by Achenbach and Zhu (1989, 1990), a very thin compliant 
interphase between fibers and matrix is modeled by a distribution of mechanical springs 
across a representative interface. This model implies that the tractions are continuous, but 
the displacements may be discontinuous across this interface. For linear behavior in the 
interphase, the relations between the relevant traction and displacement components may 
then be written as (at r = a) 

PCT„ 

-t? = trr = kr(i<?-ift    if    -C = /J>0 

-t? = t'r   and    ii? = u[   if   -C = t[^0 

-tV = tf0 = ko(i$-uf
u) 

r ■ DO 

(la) 

(lb) 

(lc) 

AM 

• QG0 

(a) (b) 

Fig. 1. (a) Cross-sectional view of the composite with a fiber with dissimilar interphase stiffness, 
(b) configuration of a fiber. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Stress states at neighboring fibers 1557 

where t, and tB are the interface tractions in the radial and circumferential directions, 
respectively. Here and in the sequel, quantities with upper index "m" and "f" are defined 
in the matrix and the fiber regions, respectively. The addition of eqn (lb) assures that the 
model will not allow a physically unrealistic radial overlap of the matrix and fiber materials 
across the interface. The constants k, and ke are proportionality constants which define the 
mechanical properties of the interphase. 

The conditions (1) include the case of perfect bonding (kr = k0 = co) when the tractions 
and displacements are continuous and the case of total debonding (kr = k0 = 0) when the 
tractions vanish. In the latter case, it should be noted that the pure sliding condition 
(kr = oo, kg = 0) is assumed to exist on the interface when the radial stresses are compressive. 
If there exist interphase defects like open cracks, say over a region —0C < 0 < 6C < n/2 and 
-0c + n < 6 < 0c+7t, then in the domain 0 < 0 ^ n/2 the conditions (1) are valid for r = a, 
6C < 0 =$ n/2, while for r = a and 0 < 0 < 6C, we should have interphase crack conditions 
defined by 

C = t[ = C = lti = 0. (2) 

It is also noted that for an interphase crack the ligament at the tip of the disbond 
undergoes a finite stretch when in tension, and consequently the tractions remain bounded. 
Hence the usual problems of violently oscillating singularities (see Williams, 1959) that are 
associated with crack-tip fields for a crack in a perfectly bonded interface, do not occur 
for the spring-layer model. This conclusion follows immediately from eqn (1) and the 
boundedness of the displacements. 

For the generation of interphase cracks, as well as their propagation and arrest, it is 
feasible to use a critical stress, critical strain, or critical strain energy density criterion, 
because in the spring-layer model these quantities are well defined near the tip of an 
interphase crack. In this paper we will employ an energy density criterion, since it combines 
information on the tensile and shear stresses in the interphase. For the interphase model 
defined by eqns (1), the strain energy per unit interphase area is easy to calculate. We have 

U^ + ^. (3) 
2k,       2k0 

v ' 

It should be noted here that t[ is included in U only when t[ is positive (tension). It is 
assumed that compressive values of t[ do not affect the integrity of the interphase. 

By substituting k into eqn (3) the normalized form ofU,0= Unm/(ola), becomes 

ü_(t>a?   j   O'e/iTo)2 (4) 

2kra/nm     2k0a/nm 

where /tm is the shear modulus of the matrix material, and a0 is the applied stress. It is 
reasonable to assume that the interphase will break and form an interphase crack in a 
region of positive radial stress when 

U 7* U". (5) 

When U = U", the applied stress a0 reaches a critical value a% which can be related to Ucr 

by eqn (4) as 

yn   f/cr-l» 

a   O 
(6) 

An analysis of the initiation and propagation of matrix cracks must also be based on 
an appropriate criterion. For a perfect composite subjected to tensile stresses, numerical 
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results show, in agreement with physical intuition, see e.g. Achenbach and Zhu (1989, 
1990), that the circumferential tensile stress at the fiber-matrix interphase is the largest 
tensile stress component in the matrix material. As a crack initiation criterion we choose 

a9 > a" (7) 

where a" is a critical stress of the matrix material for matrix crack initiation. 
The displacement and traction components for the case that no dissimilar fiber is 

present (perfect composite) are denoted by u,fp(x) and /-p(x) for the fibers, and u™p(x) and 
tTp(x) for the matrix material. The deviations of these quantities due to the presence of a 
dissimilar fiber are denoted by fiftx), t\(x), ü?(x) andf?(x). The total displacement and 
traction fields in the presence of a dissimilar fiber may then be written as 

it(x) = ip(x) + (f,(x) (8a) 

u?(x) = u?p(x) + n?(x) (8b) 

tXx) = t(?(x) + tUx) (8c) 

t?(x) = tr(x) + IT(x). (8d) 

The interface conditions corresponding to the case of a different interface constant are 
obtained by replacing in eqns (la), (lb) and (lc) the total tractions f™. tf, t[, and /J, by the 
superpositions (8c) and (8d). On the interphase T,(^ Tu) we then have: 

-t? = kr(ü?-ü(,) (9a) 

-?S, = MflS,-flo) (9b) 

where (r, 0) is a local polar coordinate located at the center of each fiber and Tg represents 
the interfacial boundary of the fiber q. On the interphase T0 we have: 

-1T =-(*,- £r)0r - H?) + kr(ü? - it) (9c) 

- if =-(*„- hW - uf) + «fl(fl? - ü[). (9d) 

In eqns (9c) and (9d), kr and ke are the interphase constants for the dissimilar fiber. 
If the interphase T0 contains an interphase crack in the range of — dc < 8 < 8C < n/2 

and n — 0c<0<n+6c then eqns (9c and 9d) become 

-IT = -kW-u?) = Cp (9e) 

-r;r= -k0(ur-itt) = tr. (90 

For all interphases rq including r0, the continuity of the tractions across the interphase T, 
are satisfied by 

-7,m = ?,f (10a) 

-tf = tr0. (10b) 

By appropriate coordinate transformations the interphase conditions (la), (lb) and 
(lc) can be expressed in terms of Cartesian components of tractions and displacements 
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which will be used in the actual computations. The interphase conditions on the interphase 
rq (# r0) given by eqns (9a, 9b) may be rewritten as 

7m im 

aC, cos 0 ~ + aCx sin 0 ~ + cos 0(iT? - ü[) + sin 0(fi™ - ü\) = 0 (11a) 

7m 7m 

-aC2 cos 0 — + aC2 sin 0-*-sin0(sm-fif()+cos 0()7.m-fi.f) = 0 (lib) 
fim (im 

where F™,//*"1 has been introduced to enhance the accuracy of the solutions of the simul- 
taneous equations in the numerical calculations using the BEM. The dimensionless com- 
pliant constants are defined as 

1       um 1       um 

C, —= Y   and   C2= — = !—. (I2a,b) 
A:,     akr k2     ak0 

v        ' 

Similarly the interphase conditions (9c, 9d) on the boundary of the dissimilar fiber, 
r0, can be expressed as 

7m 7m 

aCt cos 0 — + aCt sin 0 -^ + cos 0(fi™ - ii[) + sin 0(rt^ - f/,) 

I        tmp tmp\ 
+ a(Cl-Cl)[co&0—+&mOJL-) = 0    (13a) 

V      nm nmJ 

7m ;m 

- aC2 sin 0 — + aC2 cos 0 -^- - sin 0(fim - O+cos 0(fim - r/[.) 
/i"1 /«"' 

(jinp imp\ 

sin0-^--cos0-M = O    (13b) 

where 

C-=£T^ and c'-zrk- (,4a'b) 

If the interphase of r0 contains an interphase crack in the range of — 0C < 0 < 0C < TT/2 
and n — 0C< 9 <n + 0c then eqns (13a, 13b) become 

/?"=-??   and    /»«,= -r». (15a,b) 

i 

If the dissimilar interphase T0 has compressive radial tractions over one or more 
elements on T0 then to prevent the interphase from overlapping, the eqns (13a, 13b) become 

■ fl? = fl£   and   t% = ffy   on   T0   if/f
r<0. (16a,b) 

Continuity of tractions across the interphase T, including T0 is satisfied as 

r?=-tfx   and   t™=-tr
y (17a,b) 
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BIEsfor unidirectional composite with one dissimilar fiber 
In earlier papers, see e.g. Achenbach and Zhu (1989, 1990), a boundary integral 

equation has been derived for the displacements and tractions on the circumference of a 
fiber inside a basic cell of the composite. Here we write the analogous boundary integral 
equation for fiber q. 

V(S) = irS(x,Qt?{x)&T{x) 
r+ra 

(jc)dr(x),   xsT,^eTq    (18a) 

where 

r= Er, 
,= 0 

(18b) 

and 

u$(x,e) = 
i 

87t/(m(l-vm) 

,   , 1 \ r      dRdR (3-40.n(-k+~- 

7™(*,£)=- Am ^ I/y(x, S)Sik: + /*» ^- £/?(*,|) + /<m ^ U%(x, « 

(19a) 

«*(*)•  (19b) 

A similar BIE for the solution u?p(£,) in the matrix of the perfect composite can be written 
as 

5«rp(£) = £/£(*, fl/7(jr)dr(x)- 
r+r„ 

ry(x,{xp(jc)dr(x),  xer.ter,.  (20) 
r+r* 

Subtracting eqn (20) from eqn (18) gives a BIE for uf(0 as 

fl?"(0 = U"(x,l;)tT(x)dnx)- T^(x,^)üJ'(x)dr(x) 

+ Uy(x,S,)tT{x)dnx)-      rS(x,^{x)AT(x),   jrer.felY     (21) 
Jrm 

Since the tractions t?(x) corresponding to ü?(x) are self-equilibrating with respect to 
the center of fiber zero, it follows from Saint-Venant's principle that tt(x), ü"'(x), tc,(x) and 
F™ (x) decrease as the field point x moves away from the center of the dissimilar fiber. 
Hence, the contour can be appropriately chosen so far from the origin that the integrals 
over the contour T^ in eqn (21) come to vanish. As an additional approximation it may be 
assumed that only a small number of neighboring fibers need be included in T. 

The corresponding BIE for the fiber q may be written as 

«if«D= [ £/{,(*,{)/)(*) dr(*)- T[(x^)ufj(x) dr(x),   x.ier,. (22) 

Similarly, substituting eqn (8a) into eqn (22) yields 
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Jflf«) = ufaWjWdUx)- ru(x,Mfj(x) <ir(x) 

•;«?■«)+ ul(x,t)t?(x)dr(x)- ru(x,i)i^(x)dr(x),   x,Serq.    (23) 

But we know that the terms in the second line of eqn (23) vanish for all fibers in the 
composite without a dissimilar fiber, so we have 

-M) = ul(x,wrj(x)dr(x)- T{
0(x,^(x)(\r(x),   x,ZeTq (24) 

For plane strain the circumferential stress of along the matrix side of the interphase 
may be calculated by 

vm 2d 

1-v" 

duo nm + — 
a(\-vm)\ 30 

(25) 

where du™/30 will be obtained by a numerical differentiation method. 

Example: hexagonal-array composite 
Equations (1)—(25) are valid for any distribution of the fibers over the cross section. 

We will now, however, consider the special case of a hexagonal-array composite as shown 
in Fig. 2. For the case without a dissimilar fiber the interphase fields have been analysed by 
Achenbach and Zhu (1989, 1990). 

QCT0 

(a) 

'tejr, 

SU 
fi m 

TTflfm JWTIII       "y 

(b) 

UV=L= 0 

(0 

Fig. 2. Configuration for the hexagonal array: (a) the dissimilar fiber 0 has lower interphase stiffness. 
All other fibers have the same interphase stiffnesses, (b) shows the domain for numerical calculations, 

and (c) the dissimilar fiber 0 has interphase debonding. 
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The centers of the regular fibers are located at the following points 

(x,y) = (  ,   *'> 2 hA    l'l> I 'I = 0,1,2,3,...    and    /+;" = even integer (26) 

where b is the distance between the centers of two adjacent fibers, and \i\ + \j\ =£ 0. A 
Cartesian coordinate system (x, y) has its origin at the center of the dissimilar fiber. 

Because of symmetry with respect to the x- and j'-axes we only need to consider the 
fibers in the first quadrant, as shown in Fig. 2. The nearest neighbors to the dissimilar fiber 
are denoted fibers 1 and 2, and the next nearest fibers are 3, 4, 5 and 6. 

The symmetry conditions on the sides of the first quadrant make it possible to limit 
the boundary element calculations to that quadrant only. The fundamental solutions which 
satisfy the symmetry conditions ux = /,, = 0 at * = 0 and uy = tx = 0 at y = 0 can be 
constructed from the full-space fundamental solutions given by eqns (19a)—(19b). For a 
load applied at (x,y) the construction is easily achieved by placing corresponding loads at 
the image points of (x,y) in the other three quadrants, as shown in Fig. 3. In terms of 
Ujj(x,l;) and T0(x,ID given by eqns (19a)—(19b) (superscript 'W can be disregarded), the 
first quadrant fundamental solutions f/^(.v, f)and Tfi(x, £) may be written as 

£/£(*,£) = I/,;(x,fl+ «£/<,(*, -l) + ßuu(x, -fl + y £/<,(*,?),   *,{e 1st Quadrant   (27a) 

T?j(x,S,) = TyfaQ + uTyix, -Z) + ßTu(x, -Q + yTyixJ),   *,$e 1st Quadrant    (27b) 

where the coefficients a, ß and y take values, a = ß = — y=— 1 for i=l and 
— a — ß — y= — 1 for /' = 2 and § denotes the conjugate point off. 

Morp'detailed expressions for {/$(*,§) and T^(x, f) are given in the Appendix. 

Boundary element method 
Equations (18)—(24) have been solved numerically by an application of the boundary 

element method. The equations have been solved in the first quadrant shown in Figure 2(b) 
by using the fundamental solutions given by eqns (27a) and (27b). It has been assumed 
that the deviations in the fields of stress and deformation generated by the interphase 
properties of the dissimilar fiber 0 extend to the next nearest two fiber-layers only, i.e. to 
the fibers 1 and 2 in the first fiber-layer and to the fibers 3-6 in the second fiber-layer. 

Fig. 3. Geometrical construction of the first quadrant fundamental solutions; { = (si,£2) and 
? = «i.-<y. 
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The contours, T0, T,, r2, r3, T4, T5 and T6, contain unknown deviations of the tractions 
and displacements. Along these contours, the integration is performed clockwise for the 
matrix side integration and counterclockwise for the fiber side. Suppose that the contours 
To. T,, r2, r3, r4, r5 and r6 are divided into Na, N,, N2, Nit N4, Ns and N6 elements, 
respectively, where the fields are taken as constants over each element. We then have 8N0, 
8iV|, 8JV2, 8/V3, 8N4, 8/V5 and 8Nb unknowns for the integrations over the contours r0> V,, 
r2, r3, r4, T5 and r6, respectively (two traction and two displacement components on each 
side of a contour). Consequently we have a total of S(NU + Nt + N1 + Ni + N4 + N5 + N6) 
unknowns. The same number of equations is needed. Equations (21) and (24) give 
4(N0+N{ + N2 + N3 + N4 + N5 + Nh) equations and the continuity of tractions, eqn (9), tog- 
ether with eqn (13) on the interface yields 4(Nt)+Nl + N2 + Ni + N4 + N5 + Nb) equations. 
Hence the total number of equations is the same as the total number of unknowns. Thus 
the discretized system of eqns (21) and (24) can be solved numerically. When there are no 
interphase flaws, all interphases are equally divided, specifically in 120 or 60 elements, such 
that 4N0 = AT, = 2N2 = 120 and 2N3 = N4 = N5 = 2Nb = 60. When r„ contains a crack, 
the crack tip element and the element ahead of the crack tip element are further divided 
into smaller elements to give more accurate results. The number of elements near the crack 
tip is increased until a further increase does not change the numerical results. Numerical 
calculations have been carried out for FP/AI composites (see Takahashi and Chou, 1988) 
with the following properties: 

Aluminum matrix : /<"' = 25.61 CiPa, vm = 0.345 

FP(A1203) fibers: / = l57.9GPa, v1 - 0.2. 

The perfect and the dissimilar interphase constants (A:,., A„) and (kn £„) were rendered 
dimensionless by division by /("'/«, where a is the radius of the fibers. In the computations, 
the two interphase constants were taken equal in magnitude, and thus kr/(fi'"/a) = kB/ 
(fim/a) — k. Similarly in the dissimilar interphase k,./(iim/a) = k0/(ft'"/a) = k. 

In the initial state of the calculation the radial interface stress rrj" (= a\ = t[ = — O 
is computed under the assumption that eqn (la) applies along the interface of the dissimilar 
fiber. If a negative radial stress value is obtained over one or more elements and the 
displacements display an overlap, eqn (la) is replaced by eqn (lb) and the calculation is 
redone until the overlap disappears and all boundary conditions are satisfied. Values of 
k = 0.001,0.1, 1, 10, lOOand oo were considered for the interphase stiffness of the dissimilar 
fiber and k = oo for the neighboring fibers. The fiber volume ratio V( was chosen as 0.2, 
0.4, 0.6 or 0.8. 

RESULTS 

The approximation of including only the nearest and next-nearest neighbors in the 
BEM calculations would seem to be a reasonable one. The question does, however, arise 
whether sufficiently accurate results can be obtained by including only the nearest neighbors, 
i.e. fibers 1 and 2 in Fig. 2. Intuitively it is expected that this simpler approximation will be 
valid for smaller volume densities, Vt, of the fibers. Test calculations have been carried out 
for the case of uniaxial tension, for V( = 0.2 and V( = 0.8, and k = 10 and k = I. The 
results are shown in Fig. 4. It is noted that the inclusion of the next-nearest neighboring 
fibers (solid lines) makes a small difference which becomes somewhat more pronounced for 
smaller values of k and larger values of V(. The numerical results presented in the sequel 
have been carried out taking into account only the next nearest neighbors. 

Figure 5 shows the stress fields or/au, ar0/a0, an\aü at the matrix side of the interphase 
and the normalized strain energy density O in the interphase of the dissimilar fiber for the 
case of tension in the .v direction. The radial stress in the region of tensile stresses decreases 
as the interphase stiffness, k, of the dissimilar fiber decreases. The maximum value of the 
hoop stress, near 0 = 75°, does, however, increase as k decreases. Other calculations not 
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Fig 4 Comparison of stress fields in the interphase of the dissimilar fiber obtained by considering 
only the first fiber layer (dashed lines) and considering both the first and second fiber layers (sohd 

lines) for the selected values of V, and k. 
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Fig 5 alaa a 8/<r0, "oK at the matrix side of the interphase and 0 in the interphase of the dissimilar 
fiber 0, for various k with k = oo and V, = 0.4, and for uniaxial tension in the x direction. 
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Fig. 6. (Tu/tTo at the matrix side of the interphases of the dissimilar fiber 0 and the neighboring fibers 
1 and 2, for various k with k — oo and V, = 0.6, and for uniaxial tension in the x direction. 

reported here show that the magnitudes of <rr/a0, arBja0, a0/a0 and Ü at the dissimilar 
interphase are slightly less than those of arja0, ar0\aa, aB/a0 and O at the interphases of the 
perfect composite with the same interphase stiffness (k = k) in all interphases. That differ- 
ence becomes larger for lower interphase stiffness k. 

Figure 6 shows the hoop stresses along the matrix-side of the interphases of the three 
fibers 0, 1 and 2 with V( = 0.6 for various k: k == oo, 10, 1,0.1,0.001. Comparison with the 
results of Fig. 5 shows that the hoop stress a0/a0of the dissimilar fiber for Vt = 0.6 is slightly 
smaller than that for V{ = 0.4. The hoop stresses of the neighboring fibers 1 and 2 slightly 
increase as k decreases. The result shows that for low k~ the positive maximum hoop stress 
(öfl)max occurs near 0 = 70° for the dissimilar fiber, near 6 = -208° for the neighboring 
fiber 1 and near 6 = — 30" for fiber 2. 

Figure 7 shows the hoop stresses along the matrix side of the interphase of the dissimilar 
fiber and the strain energy in the interphase for the case of uniaxial compression in the x 
direction. When the composite is compressed in the x direction the maximum tensile hoop 
stress occurs at 0 = 0° for low k and at 0 = 90° for high ic (above 10). For the dissimilar 
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Fig. 7. a0/a0 at the matrix side of the interphase and Ü in the interphase of the dissimilar fiber 0, for 
various k with k = oo and V, = 0.4, for uniaxial compression in the x direction. 

fiber the maximum strain energy Umax occurs near 6 = 55° for k = 1. The hoop stresses of 
the neighboring fibers 1 and 2 are compressive for any k. 

When the interphase of the dissimilar fiber contains interphase cracks as shown in Fig. 
2(c), the behavior of ar/a0, arB/a0, aB/a0 and 0 depends greatly upon the interphase stiffness 
k. Figure 8 shows o0/a0 and O for various k along the matrix side of the interphase of the 
dissimilar fiber for an interphase crack of length c = c/0.05236a = 9, for the case of an 
uniaxial tensile stress a0 in the x direction. The maximum hoop stress and energy density 
are obtained at the crack tip. The magnitude of the hoop stress increases with increasing 
values of k. The results for ae/a0 at the neighboring fibers 1 and 2 are also shown in Fig. 8. 
The overall behavior for the neighboring fibers is very similar to that displayed in Fig. 6. 

Figure 9 shows a0/a0 along the matrix side of the interphase of the dissimilar fiber and 
Ü in the interphase for k = 10 and k = 1, for various interphase crack lengths S. The results 
show that for k = 10 the positive maximum hoop stress occurs at the crack tip and increases 
as c increases. On the other hand for k = 1 the positive maximum hoop stress occurs near 
9 = 75° for e < 18. Results not displayed here show that for both k = 1 and k = 10 the 
stresses a0 along the interphases of the neighboring fibers 1 and 2 increase locally as 5 
increases, but there is little difference between k = 1 and k = 10. 

A stability condition is needed when interphase cracks are present. The strain energy 
criterion was introduced in the papers by Achenbach and Zhu (1989, 1990) to investigate 
the proclivity of an interphase crack to propagate. Figure 9 shows that 0 plotted versus 9 
shows maximums at the tips of the interphase cracks of the dissimilar fiber. For k = 1, the 
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Fig. 8. <r„/<r„ at the matrix sides of the interphases of the dissimilar fiber 0 and the neighboring fibers 
1 and 2, and 0 in the interphase of fiber 0, for various k w.th k = oo and Vt = 0.4, and c - 9, for 

uniaxial tension in the x direction. 
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Fig. 9. aolaa at the matrix side of the interphase and 0 in the interphase of the dissimilar fiber 0 for 

various c with k = oo, V, = 0.4 and k = 10 and k = 1, for uniaxial tension in the x direction. 
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maximum values first increase and then decrease as c increases. They become in fact smaller 
than for c = 0, and hence the interface flaw will be arrested for that case. 

CONCLUDING COMMENTS 

A fiber whose interphase has a lower stiffness than the surrounding fibers, or whose 
interphase contains cracks, gives rise to higher fields of stress and deformation in its 
immediate vicinity. For the case of transverse loading, a numerical method based on the 
solution of boundary integral equations by the boundary element method has been 
developed to obtain the stresses at the matrix side of the interphases and the deformation 
energy density in the interphases, for the dissimilar fiber and its nearest neighbors. The 
example of a hexagonal array fiber composite has been discussed in some detail, and 
particular attention has been devoted to the hoop stresses and the deformation energy 
densities since critical values of these quantities may be associated with radial matrix 
cracking and interphase cracking, respectively. 
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APPENDIX: FIRST QUADRANT FUNDAMENTAL SOLUTIONS 

The components of the two-dimensional first quadrant fundamental displacement solutions may be written 

r *,]?,    fdR\     (8R2\
2    (SRA\(BR4\

2 

= K 

(Al) 
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where K = \l[inn(\ -v)]. Also 

[dR dR     dR2 d. dR 8R     dR2 dR± _ dR± OR,     dR. 
x2      dx, 8x2      dx 

4 SRA1 
i dx2] 

(A2) 

U$l(x,Q~Vtl(x,Q + Ull(x,-l)-Uil(x,-Q-Ui-l(x,ll = K 
dR dR     dR2 dR2    dR) dR>     3*4 8R± 

Xl 

(A3) 

dx, dx2     dx, dx2     dx, dx2     dx, dx2 

and 

U&(x,Q = U22(x,S)+U22(x,-l)-U12(x,-e)-U12(x,?) 

r Ä,Ä,     f8R\2    fdR2\
2    fdR2\

2    (dRtV 

=4(3-4v)ln ««7+k) +fc) -fe) ~te) (A4) 

Here as shown in Fig. 2, R2, /?3 and Ä4 are the distances between the load point in the first quadrant and the 
image points in the second, third and fourth quadrants, respectively. Also, R is the distance between load point, 
£, and the field point, x. Thus, 

R = \x-S\,R2 = \x + Z\,R3 = \x + Z\    and    R4 = |JC-?|. 

The first quadrant traction solutions may be expressed as 

T?,(x,$) = Tl,(x,l;)-T„(x,-i)-T„(x-l;) + T,l(x,S) 

where C= -2/iAT. Also 

r?2 (*>« = T, 2 (*,«)- T, 2 (*,-?)- T,2 (*,-{) + T, 2 (x, ?) 

crjÄ a« a«   „   „ 7   a«      a/jy 
= R[2TncT,dT2

+(i-2V\n^2-^dx-,)_ 

8R2        dR2 

>~äx~2~"2dx, 

(A5) 

(A6) 

J?2 |_    3«  dx, dx2 \ 

CY^dR.dRydRy    „ /    a«,        5R3\ 

cr5Ä4aÄ4Ö«4     .,    _,/    dR,        dRA' 

(A7) 

r?, (x, {) = r2 ,(*,« + r2, (*, -?)- T2 , (x, -«- r2 ,(*, ?) 
crjfi a« a*   „  .,/   a«      auy 

= R[2TndTldT2-
(l-2vX'dT2-"2dT,)_ 

c r a^a«^    ,_    /   ^      aM- 
Ä2 L    3"   a*' 3x2 \    dx2 dx,) 

_£\23H±d^d^ /dR,        dR,Y 

R3 [    dn  dx, dx2     
v '\' 3x2 3-c,) 

_CLVd_^dR±dR±/dR±dRiY 
RA I    dn  dx, dx2 '\    dx2 dxx)_ 

(A8) 
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TV,(.v, O = T22(x, & + Tn(x, -?) - T22(x, -«)- T22(x, ?) 

_C dR 
= YJn 

'YyHll 

(l-2v) + 2 

(l-2v) + 2 

dR 

dx\ 

dR, 

äv:7 

C dR2 
+ Y 1)7 

Y~dn 

(l-2v) + 2 
dx2 

(A9) 

d-2») + 2|^ 

It can be verified that the first quadrant fundamental solutions satisfy the following boundary conditions on 

axes of symmetry: 

Unix,® = TJx.S) = 0,   jre(.v = 0,.i> > 0) 

Ul2(x,0 = 7'„(.v,«) = 0,    xe(x > 0, v = 0). 

(A 10) 

(AH) 

Here the subscript /denotes the load direction and takes a value of I or 2, while the second subscript indicates the 
displacement or traction direction. 
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Cylinder Theory for Unidirectional Composite 
I Materials 
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The theory discussed here is intended to provide an approximate solution of the mul- 
Itiple fracture problems of unidirectional fiber reinforced composite materials. The strategy 

is to assume a reasonable displacement field which is expected to be good enough for slowly 
• varying traction boundary conditions on the lateral surface of a cylinder, then apply the van- 
ational principle to get the governing equations and necessary boundary conditions. All 
the field quantities(stresses, strains, and displacements) are expressed in terms of average 

■ quantities over the cross section of the cylinder. The unidirectional multiple fracture prob- 
I lern of a unidirectional composite is solved by patching the fiber and matrix cylinders to- 

gether. 

I 
I 

I 
I 
I 
I 

Jyi-Jiin Luo and Isaac M. Daniel 

1    Basic Theory 

For a hollow cylinder with inner radius fl,- and outer radius R0, the displacement field is 
I assumed to take the following form 

. ur(r,z)   =   rfl(z) + ^f2(z), (D 

I Uz(r,z)   =   w(z) + g(r)K{z). (2) 

- The radial displacement ur(r, z) is required to be constant at r = R0, or 

■ ur(R0,z) = u0. 

If we set the displacement at r = Ri to u{z), the radial displacement ur(r, z) can be written 

aS . _   . r»9v • D2 

^ = wh?l(-r+T)RAZ)+(r" T)ROUC (3) 

1 
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Note that the radial displacement ur(r, z) is consistent with the Lame* solution of a pressur- 
ized cylinder. 

For the axial displacement, we require w(z) to be equal to the average displacement of 
the cross section of the cylinder A, or 

/ g(r)dA = 0. 
JA 

The shear strain jrz at the outer diameter R0 is required to be zero, 

1rz{Ro,z) - (ur<z + U2,r)r=fl0 = 0. 

(4) 

Substituting the displacement fields (eqs. 2 and 3) into the above equation, we have 

-)        = 0. (5) 
/ r=R0 

Equations (4) and (5) are automatically satisfied if g(r) takes the following form 

g{r) = ^r2-R2
0\nr-cx, (6) 

where a is defined by 

V   dr 

in which the cross section area of the cylinder is given by A = IT \R2
0 — R] |. 

(7) 

Putting R0 = Rm and i?,- = Rf into the above displacement fields for matrix cylinder 
of a unidirectional composite element, we get 

ur(r,z)   = 
1 

Rl-R) 

R2 \ /      R2 \ 
-r + -SLJRfUm(z) +(r- -^)Rmu0 

uz(r,z)   =   wm(z) + gm(r)Km(z) 

where gm(r) is given by 

1 
9m(r) = ^r2 - R2

m\nr- am, 

1   f  r2 

a™ = ^jA^-R™Xnr)dA- 

(8) 

(9) 

(10) 

(11) 
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The function um(r) is interpreted as the radial displacement on the inner surface of the mat- 
rix. u0 is the radial displacement on the outer surface. The function wm(r) is the average 
axial displacement, and nm(r) is interpreted as the curvature of axial displacement at large 

In the fiber region, set R0 = 0, #,- = Rf, and u0 = 0, then eqs. (2) and (3) become 

ur(r, z) 
R 

■u/(z), 

u2(r,z)   =   wj(z) + gf(r)K(z), 

where g/(r) is given by 

9}{r)   =   -r2- a/, 

,2 

-dA 
R) 

(12) 

(13) 

(14) 

(15) 

The function uj(z) is interpreted as the radial displacement on the lateral surface of the 
fiber. The function Wf(r) is the average axial displacement, and K/(r) is interpreted as the 
curvature of the axial displacement at the center (r = 0) of the cross section of the fiber. 

1.1   Cylinder Strains and Cylinder Stress Resultants 

The strains in the hollow (matrix) cylinder can be found from the displacement fields given 
by eqs. (2) and (3) 

1 
er   =   ur 

R?0-R} 
1 

R2 \ f       i?2 

.l-tS)RiU{z)+ (l + ^)RoUo 

£6    = r       Rl-R] 

uz.z = -^- + g(r) 

(-1 + -±)RMZ)+(I-^)ROU0 

dn(z) 
dz dz 

dg(r) 
dr 

K(Z) 
Ri      du(z) 

Rl-R]   dz 

Define cylinder strains ei, e2) 7> Qi, and q2 by 

£i   =   -j / e*dA> A JA 

(16) 

(17) 

(18) 

(19) 

(20) 



I 

f 

(21) 

(22) 

I 
i 
i 
I 7   =   — J (er - ee)dA, 

92   =   |/' 9(r)ezdA, (24) 

where h and 72 are given by 

tt Substituting eqs. (16-19) into (20-24), we get the cylinder strain-displacement relations 

' £l   =   *£, (25) 

62   =   fi^fi? [ÄoW° " RiU{z)]' (26) 

I 
_      , x Ri      du(z) 

dn(z) 
92 = "IT' 

(27) 

(28) 

(29) 

where m is defined by 

m        A   JAT1 

Define cylinder stress resultants Nx, 7V2,5, Mi, and M2 by 

(30) 

I 
I 

Ni   =    /^<M, (31) 
JA      2 

5   =    f^^dA, (32) 

| Ml   =   JA
d-^-rr2dA, , (33) 

M2   =   j g(r)azdA. (34) 

1 
4 

I 
I 
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Using linear elastic stress-strain relations between stresses in eqs. (30-34) and strains in eqs. 
(20-24), we obtain 

Ni   = (X + 2n)Ael+2XAe2, 

N2   = 2{X + (i)Ae2 + XAeu 

S   = pAi, 

Mi   = f*hqi, 
M2   = (X + 2fi)I2q2, 

where A and \i are Lamp's constants. 

(35) 

(36) 

(37) 

(38) 

(39) 

Substituting the cylinder strain-displacement relations (eqs. 25-29) into the cylinder stress- 
strain relations (eqs. 35-39), we get the cylinder stress-displacement relations 

dz 
2XA 

Ri-m 
[R0u0 - Riu(z)], 

"S   =    (Riu0 — R0u(z)j, 

Mi      =     flIi[K(z)- 

M2 (A + 2fi)I2 

R2
0-R2   dz 

CIK(Z) 

dz 

)• 

dA. 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

The strain energy per unit length of the cylinder Uc is defined as 

Uc   =    f UdA 

=   \h [A(Cr + Ce + tzf + Me* + t2e + e* + -T] 

Using the cylinder strain definitions (eqs. 20-24) and the cylinder stress-strain relations 
(eqs. 35-39), Uc can be simplified to 

Uc   =   -(xA(e1 + 2e2)
2 + 2fiA(t2 + 2e2) + m2fiAj2 + nhq2 

+(A + 2/i)/2Q2
2} , (47) 

=   ^(Niei+2N2e2 + m2S^ + Miqi + M2q2\ (48) 
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i 
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The equations discussed in this section can be applied to the matrix region if R0 is replaced 
by Rm, and fi, by Rf. For the fiber region, R0 and u0 are replaced by zero, and Ri replaced 
byÄ,. 

2   Principle of Virtual Work 

From eq. (47), we have 

6Ue   =   AA(ci + 2e2)(8e1 + 25e2) + fiA(2e1Sel + 4e28e2) 
+m2fiA'f8-y + fihqiSqi + (A + 2p)I2q28q2. 

Using the cylinder stress-strain relations (eqs. 35-39), eq. (49) becomes 

SUC = NiSei + 2N28e2 + m2S8~/ + Mx8qx + M28q2. 

(49) 

(50) 

Now consider the independent virtual displacements 8u(z), 8w(z), 8K(Z), and 8u0 from an 
equilibrium state. Using the cylinder strain-displacement relations (eqs. 25-29), the vari- 
ation of strain energy 8UC can be expressed as 

SUe 
Ri   _(_2AT2 + ^ - 2mSR0/R,)8u(z) - ^6w(z) 

Rl-Rf\   ~*" '    dz 
. t,      dM2\r  . , ,       R + l   x~~~dt) SK^ + 

Ri 

dz 

2N2R0/Ri + 2mS\8u0 

M- 
Rl-Rl 

MiSu(z) + Ni8w(z) + M28K(Z)\ 
dz\   Rl-R] 

The virtual work 8W is 

8W   =    f (Tr8ur + Tz8iiz)dS 
Js 

=    r Tr(R0, z)8u02irR0dz + H Tr(Ri, z)8u(z)2nR{dz 
Jz\ Jz\ 

+ r Tz(Ri, z)[8w(z) + g(Ri)8K(z)]2TrRidz 

r m ,      .   RiR0 
+ hT^R^Rl. 

+ LTr^^-Rf^[\   ■   '   rj   R0 

(51) 

(52) 

R2o\8u(z1) , 

-r + 
RI\SU(Z2) + 

R]\8u0- 
r ) Ri. 

dA 

R2\8u0 

r ) Ri. 
dA 



I 
1 
I 
I + / T2(r, z2)[8w(z2) + g(r)8K(z2)]dA. (53) 

JA 

The principle of virtual work requires that 

SU - SW = f2 8Ucdz - SW = 0. (54) 
IJzi 

Since 8u(z), 8w(z), 8K(Z) are arbitrary in the domain (zuz2), fromeqs. (51), (53) and (54), 
we conclude that the equations of equilibrium in the zx < z < z2 domain are 

| _J^(^2N2 + ^-2mSR0/R?)   =   2nRiTr(Ri,z), (55) 

I 

i 

1 

dNi   =   2nRiT2(Ri,z), (56) 

dM2 

dz 

f     +Mi   =   2nRig{Ri)Tz(Ri,z). (57) 
dz 

Atz = zi,v/c have 

(58) 

(59) 

I 
| <Ml(z1) = -JA^-Tr(r,zl)dA    or    Su(Zl) = 0, 

Wi(zi) = - / Tz(r, *i)eL4    or    Sw{zi) = 0, 
./.A 

M2(zx) = - / g{r)Tz{r,zx)dA    or    «k^) = 0. (60) 
JA 

ft The boundary conditions at z2 are similar. From 8u0 we have the constant displacement 
^ condition 

| T2 (V2 + mSRi/R^jdz = A J" Tr(R0, z)dz 

■ +^j[|(r-^)(rr(r,«1) + rr(rJ2ra))dA    or    rf«„ = 0, (61) 

i 
I 
I 
I 
I 
I 

which implies that we can either specify u0 or determine u0 from given tractions on the 
surface. 

Substituting the cylinder stress-displacement relations (4(M4) into eqs. (55-57), we can 
get the equilibrium equations in terms of displacements. In the matrix region, these equa- 
tions are 

nRfUmhm,, f   v . ,   ,   x        /Xm/lm,,,   /   x _ 2^/ 

2^ «C(*) + Am«4(*) - ^f«m(*) - ^7 h + ^ + 7f} "m(^) 



I 
I 
I 
1 

" 2^R   —W-(z) " Xmllm(z) = -TzmiRf, z), (63) 

 -p-7 «ml«) + ^m«m(«) ö~Km{z) = -Tzm(R}, z), (64) 

'■ where Am = n(Rm - Rj) is the matrix cylinder cross-sectional area. 

Similarly, the constant displacement condition (eq. 61) becomes 

-      T     (P     »\        27TfimM0(Am+2/fm) 
- -Jrm(Rj,z) , (62) 

■rlm 

I 2(Am+2^m)/      r*2 rz2 

\    um(z)d. 
Jzi 

Z + Xr 

wm{z2) -wm(zi) 

ß/(l - f)(z2 -ZX) Jzx Z2~ZX 

I Am+//m(l+/)2u0 ,       1       p 
"   — + - 7/       lrm{Rm,z)dZ 

2Arn(^2-^i) 

Applying the same procedure in the fiber region, we have I 
i 
i 
I 

^«JM - A,«/,« + iaS«-/W - 3^i«y(.) = -rr/(Ä„,),       (66) 

(A/ + nil)Yw"Az) + W/M = -T»/(Ä/,*), (67) 
R3 

(A/ + 2HI)I£K",(Z) - W/W - l'/R/KAz) = -T,i(Rh')- (68) 

The above equations can be rewritten as 

| f <(fl + 2K -1 Vm(0 - vm(0 - (2 + Y^)«m(0 

_    R/Trm(£)     4amRf (u0 

Hm 1 -/ \R, 1 
■ / Urn 

I 
1 

(69) 

(70) 

8 
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I 
I 

I 

where 
r        n2 / n2                           l ~ U™                       2ITI

^                     *&**I2m f = Rf/Rm,       am =  1  _ 9       ,       CX = -^—,       C2 = —^3 : 

£ = Z/Rf,       Vm(() = TT^f-Km^) = Vm(Rf)Km(Z), 

Trm(0 = Trm(Rf,z),    Tzm(0 = Tzm(Rf,z). 

The constant displacement condition (eq. 65) becomes 

I 
I 
I 
1 
1 
i 
i 
I 

-2« A -1) (£■) + -^j f r„(*., «K 
\l — / J\RmJ       /im(6-6)^l 

+ 0     ,/y,w     / (-^-^(^(r.zO + T^K^))^, (72) 
2^m(6 - 6Mm JA\Rj r   J\ J 

_ 1 /•& 
«m = 7 T   /       Um(OdC- 

Q2 — ?1 -^l 

The traction terms in the above equation are zero if we consider the symmetry of the multiple 
crack problem of unidirectional composite materials. 

Similarly, in the fiber region, we have 

i«J(0-2(a/-lK(0 + «J(e)-(4a/-2)«/(0   =   -MlM,        (73) 
4 f*f 

where 

(74) 
N 

aiW)-u'f(0-*M0   =   -2&MI,       (75) 
3 AV 

where 

1 - 2uj' 

Tr/(0 = TrJ(RJtz)t        TMf({) = Tzf(Rf,z). 1 
I 
I 
I 



I 
i 
i 
I 
i 
t 
I 
i 
I 
i 
i 
i 

i 

3   Multiple fracture of unidirectional composite 

The above theory can be applied to the multiple fracture problem of unidirectional compos- 
ites. The following interfacial conditions are discussed: 

1. Perfect bonding: 

UrJ{Rf, z) = urm(Rf, z), uzm{Rf, z) = UZm{Rj, *), 

or 
uj(z) = um(z), wj(z) + Vf(z) = wm{z) + vm(z). 

2. Constant friction: 

urf(Rf, z) = urm(Rf, z),        TzJ(Rj, z) = ±r0, 

or 
Uf{z) = Um(z), Tzj(() = ±T0. 

i 

3. Coulomb friction: 

urf(Rf, z) = urm(Rf, z),        TzS{Rh z) = ±ixTr}{Rj, z), 

or 
uj{z) = um(*),        TzJ(0 = ±i*Tr,({). 

4. Noncontacting, or traction free interfaces: 

I Trf(Rm,z) = Q,        Trm(Rf,z) = Q 

or 
TrI(0 = 0,       Tzf(0 = 0. 

■ The continuity of tractions requires that 

, TrJ(Rf,z) = -Trm(R},z),        Tzf(Rf,z) = -Tzm(Rf,z), 

or 

1 
I 
I 

rr/(0 = -Trm(0. T*f(0 = -T™(t)- 

10 
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Consider any two of the above four cases connected together at zu which could include 
f fiber-matrix debonding. The boundary conditions at the ends z0 and z2 specify either the 

cylinder displacements or the cylinder stress resultants, that is, at ( = (0 and ( = £2, we 
have 

u/    or    M\f    specified, 

um or Mim specified, 

wj or N\j specified, 

wm or N\m specified, 

M                                                                         vj or Af2/ specified, 

vm or Mim specified. 

■ The continuity conditions at zx specify the continuity of cylinder displacements and cylinder 
stress resultants, that is, 

| «/(fr-) = u/(6+),      «v(6-) = ">/(&+),      «/(6-) = «/(6+), 

g «m(6~) = "m(6 + )> türo(6-) = «>m(6 + )> ^m(6~) = t>m(6 + )> 

i M1/(6-) = Mlm(6+),    Ni/(6-) = Arim(6+),    M2/(6-) = M2m(6+), 

g M!/(6-) = Mlm(6+),   AM6-) = A^im(6+),   M2/(6-) = M2m(6+). 

I 4   Crack Opening Displacements and Stress-Strain Rela- 
tions 

I 
I 
I 
I 
I 
I 
I 

Now we derive an important result from the cylinder model. Rewriting the equations of 
equilibrium (55-57) in the fiber region, we have 

 1_ 

**>+*£?) - =   2nRjTrf(Rf,z), (76) 

dNl} 

dz 
=   2nRfTzf(Rf,z), (77) 

=   2nRjgj(Rj)Tzf(Rf,z), (78) 

11 
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and in the matrix region, 

R? ^(-2N2m + ^~2mSmR)      =     2"RfTrm(Rf,z), 
Rj, 

RJ 

dNlr 

dz 
=   2nRjTzm(Rj,z), 

dM2m 

dz 
+ Mlm   =   2nRjgm(Rf)Tzm(Rf,z). 

(79) 

(80) 

(81) 

The constant displacement condition (eq. 61) gives 

f2 (N2m + mSmRf/RmJdz = Am J * Trm(Rm, z)dz 

(82) 

Now we focus our attention to the global behavior of the representative element by con- 
sidering average properties over [zuz2]. Integrating eqs. (77) and (80) over [zu z2] with the 
weight function (z - zx), one gets 

f2 Nu(z)dz   =   (z2 - zl)N1/(z2) + 2nRf H (z - z^T^Rf, z)dz 
Jzx Jzi 

r Nlm(z)dz   =   (z2 - zi)Nlm(z2) + 27TÄ/ r (z - zJT^Rf, z)dz 

Integrating eq. (76) over [zx, z2], one gets 

r N2j(z)dz = \MIS{Z) 
Z2 + nR} r Trj(Rf, z)dz. 

J Z\ & 21 •'zl 

Integrating eq. (79) over [zu z2], and using eq. (82), one gets 

rdA 

(83) 

(84) 

(85) 

I22 N2m(z)dz   =   \l    \Trm{r,zl) + Trm(r,z2) 
Jz\ & JAm L 

+ J" ^R2jTrm{Rflz) + TrRlTrm(Rm,z) 

["Sm(z)dz   =   -M^i    bm(r,^) + Trm(r,22)]^A 
Jz\ LifTh      J Am *- ■■ 

_nRjRn Y \Trm(Rj, z) + Trm(ßm, z) 
m     Jzx  L 

dz. (86) 

(87) 

12 
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nTrm(Rm,z)dz = 0, (89) 

| which states the fact that there is no global stress acting on the lateral surface of the compos- 
ite. Note that the constant displacement at the matrix outer surface is automatically satisfied 

■ in that displacement assumption. The continuity of stresses at the interface requires 

TrS{Rhz) = -Trm{Rhz\ (90) 
I Tz}(Rj,z) = -Tzm{R,,z). (91) 

Debonding, sliding and/or sticking could happen at the interface. These conditions usually 
t would require further elaboration, but intentionally leaving out these conditions would im- 

ply that the results are applicable to all of them. Applying the above boundary conditions 
(eqs. 90 and 91) to eqs. (83-87), one gets 

I 
I 
I 

Consider now a representative composite element with matrix cracks at z = zx and z = z2. 
Due to symmetry, the following boundary conditions are required: 

rr/(r,z,) = Trm(r,*2) = 0, (88) 

and 

W _i_ P NlJ(z)dz   =   Nlf(z2) + ASQ, 
■ Z2 — Z\ Jz\ 

( _L_ fZ2 Nlm(z)dz   =   Nlm{z2) - AfQ, 
Z2 — Z\ Jz\ 

f-1— r Nv{z)dz   =   AjP, 
Z2 - ZX Jzi 

—^— r N2m(z)dz   =   -AfP, (95) 
Z2 — Z\ Jz\ 

-±- I" Sm{z)dz   =   ^^-P. (96) 
z2 — Z\ Jzi rn 

(92) 

(93) 

(94) 

where the average interface radial traction P, and the normalized first moment of interface 
longitudinal traction Q are given by 

P   =   —L—HTrJ(Rj,z)dz = — r>Trm(Rf,z)dz, (97) 
Z2 — Z\ Jzi Z2 — Z\ Jzi 

i        «= i,f:^7^R'^=-i,i:^T^R^- (98> 

i 
i 
I 
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Our intention is to derive average stress and strain relations by integrating field quant- 
ities over the z-axis. The average strains are calculated by integrating the cylinder stress- 
strain relations over [zx, z2], for example, 

I 
I 
I 
I 
■ Ixj   =     /    elfdz 
g 3 Z2- Z\ Jzi 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

^— r wr-M' - 2ufNv)dz- z2 - Z\ Jzx   I'jjAj 

Substituting eqs. (92 and 94) into the above equation, one gets 

Efeif = ?±lM-2v}P + Q. (99) 
AJ 

Following the same procedure, one gets the other average strain components: 

Efe2f   =   _U}?±M + {i-U})P-v}Q, (100) 
Al 

_   Nlm(z2)     Vi^       _£__ (im) 
Wim "   Am  

+i-f    \-r' 

Eme2m   =   -„m— T--rP+i_fQ1 (102) 

., =     _   *R™Rjp (103) 
»mlm   -     mAm     ' 

where all quantities with overbar represent their averages over [zu z2\. 

When the matrix has lower strength and suitable stiffness, the matrix cracks will develop 
first, and parallel matrix cracks could occur. Consider the problem with matrix cracks at zx 

and z2, see fig. 1. The interface may have debonding and/or sliding. The composite longit- 
udinal strain ei is the same as the average fiber longitudinal strain e1/t or, using eq. (99), 

*=*> = W-%P + T,Q- 
The composite transverse strain e2 is given by 

_    _  Um(Rm,z)   _    Uo_ 

14 
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Integrating the cylinder strains-displacement relations (26) and (27) for the matrix cylinder, 
the above equation can be rewritten as 

£2 = e2t 

mfAr 
-IT 2n{\-f)RmR} 

Substituting eqs. (102) and (103) into the above equation, we have 

(106) 

-    -        l/rnNim(z2) 
t2 = V -P + fVr, 

Q. (107) 
m EmAm        (l-f)Em*   ' (l-f)E., 

The average matrix crack opening displacement 00Dm is defined by 

CODm   =   [wj(z2) - wjizi)] - [ium(z2) - wm(Zl)} 

=    (zi ~ Zi)(tlf-tlm). 

We define the number of matrix cracks per unit length, or the matrix crack density, Am by 

1 
Am   — 

Z2 -Z\ 
(108) 

Combining eqs. (99), (101) and (108), one can express the normalized matrix crack density 
AmC0Dm by 

AmOODm   =   £iy — elm 

Nlf(z2)     Nlm(z2) 
EJAJ m^^m 

+ 

EmA 

fa 2P + + f 
Ej     (I- f)En 

Q.       (109) ßj^ (l-f)En 

The average gap between the fiber surface and the inner matrix surface is given by 

%n-Vj = 2\medCODi, (110) 

where the average displacement Tij and Tim are given by 

-±— [Z2uf(z)dz, (111) 
— Z\  JzX | 

1             f*2 
  /    um(z)dz, (112) 

— Zt Jz\ 

Uf     = 

Urn.       — 
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COD,- is the average interface crack opening in the debonded region, and £d is the debonded 
length. 

Integrating the strain-displacement relations (25-27) for both the fiber and matrix re- 
gion, one can rewrite the average gap in eq. (110) as 

2Am^OODi 
= £2m — ^2/ 

mAr 
-lr. Rs "m     ->     2n(l-f)RmRf'

m' 

Using eqs. (100), (102) and (103), the above equation can be written as 

2Am4fO0D,-     ujNxs{z%)     umNlm(z2) 

(113) 

Ri E,A ■f*j him Ar 

i - uj    i + / + (i - /K 
E, (l-f)Er, 

P + v; + fVn 

Ej     (l-f)Em_ Q. (114) 

Rearranging eqs. (104), (107), (109) and (114) in matrix form, we have 

C2 .0     -f^ 
■Am 

2ff 

- Ef 

1 
E, 

'(l-f)Em      (l-J)E„ 

p 

Q 
(115) 

and 

{ 
AmCODm 

2Xm£dCCDi/Rj 

j_ i_ 
Ef Em 

E I E„ 

Nlf(*2) 
Ef 

N1J.Z2) 
Em 

+ 
ffm   _L  i   1— 

Ef       (\-J)Em Ef ^ (l-f)E„ 
l-Vf   _   l + /+(l-/)^m V±_    I /"m 
Ef (l-J)Em Ef "T" (l-J)Em 

p 

Q 
(116) 

Eliminating P and Q from eqs. (115) and (116), after complex algebraic operations, one 
gets the following results 

! 

(1 - /)AmCODm 

2\medCÖDi/Rf 

fen   b12 

&21     &22 

~^~E\ 

*2 + ^12^ 
(117) 

where 

b i + f("f ~ Um) + /(! + ty/)(1 ~ ^) (EL - i 
1 — VjVm 1 — VjVm \Vm      :     , 

6l2     = 
1 - VjVm 

(118) 

(119) 

16 



I 
I 
I 

hi = M^) _ filial (EL _,), (120) 
Il-J'/I'm 2(1 -UjUm)   \flm ) 

, , (1 ~ /)(!// ~ *V) 
Ooo =     1 :  

I 
I 
I 

I 
I 
I 
I 

»22 
1 - UfU„ 

| (l-/)(l+^)(l-2^)/       flm\ (m) 

■ The parameters 6,j (i, j = 1,2) are the elastic properties of the composites, and depend only 
* on the constituent elastic constants and fiber volume ratio; ~öx is the composite longitudinal 
I                      stress given by 

_      Nlf + Nlm 
<?i = —:——: • (122) 

I Note that Nim(z2) is zero because of the presence of matrix cracks; Ex is the undamaged 
composite Young's modulus given by 

1 + /(l - 2^m) + (1 - /)(1 - 2uf)nm/iif 

and v\i is Poisson's ratio given by 

^12 = J*'/ + (1 - JWm H TTlvi—ö—TTTi F\7i—ö—\ 1 •      (124^ 1 + /(l - 2i/m) + (1 - /)(1 - 2i/f)tim/fMf 

5   Results and Discussion 

I Introducing the experimentally determined constituent and composite properties in eq. (117), 
we obtain results for the total crack opening per unit length Am 00Dm and for 2Am^00D,-/Rj, 
which are plotted versus applied strain ex in Fig. 2 and 3. which are the results from two dif- 

I ferent batches of SiC/CAS. They both show that interfacial debonding happens a little bit 
^ after matrix cracks start. Fiber breaks are ignored in the calculation. Since fibers only break 
■ under higher loading (mostly after matrix crack saturation), these results are believed to be 

acceptible for lower strains, and can be used only for reference under higher strain. 

17 
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Fig. 1: Unit Cell Between Matrix Cracks Illustrating Matrix Crack Opening Displacement 
CODm and Interface Debonding Crack Opening Displacement COD,. 
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Fig. 2: Stress Strain Curves and Predicted Crack Opening Displacements 00Dm and COD, 
of Unidirectional SiC/CAS Composite under Longitudinal Tension. 
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of Unidirectional SiC/CAS Composite under Longitudinal Tension. 
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Abstract—Failure mechanisms were studied under the microscope in a crossply silicon carbide/glass- 
ceramic composite under axial tensile loading. Failure initiation takes place in the 90° layer. It takes 
the form of radial matrix cracks around the fibers, followed by interfacial cracks, which in turn 
coalesce into transverse macrocracks. These transverse macrocracks in the 90" layer reach a charac- 
teristic saturation crack density with a minimum crack spacing of the order of the layer thickness. 
Subsequently, transverse matrix cracks are generated in the 0° layer, increasing in density up to a 
minimum crack spacing of the order of eight fiber diameters. This stage of failure is accompanied 
by fiber-matrix debonding and some fiber-failures in the 0° layer. In the third stage of damage 
development, the macrocracks of the 90° layer branch off and connect with the 0" layer cracks in a 
characteristic "delta" pattern. This is finally followed by delamination and additional cracking in 
the 90° layer prior to ultimate failure. The various failure mechanisms and their interactions 
were discussed and compared with predictions of prior experimental and analytical studies of 
unidirectional and crossply composites. 

1. INTRODUCTION 

The newer generation of advanced composites designed to meet high temperature per- 
formance requirements includes ceramic-matrix composites. Ceramic composites display 
appreciable ductility and have higher fracture toughness and better fatigue endurance than 
comparable monolithic ceramics. Promising reinforcements include carbon, silicon carbide 
(SiC) and mullite fibers. Matrices used successfully include glass, glass-ceramic, carbon, 
silicon carbide, silicon nitride and aluminum oxide. Composites consisting of glass-ceramic 
matrices, such as lithium aluminosilicate (LAS), calcium alnminosilicate (CAS) and mag- 
nesium aluminosilicate (MAS) reinforced with silicon carbide yarn or monofilament have 
been developed; see Prewo and Brennan (1982), Brennan and Prewo (1982), Larsen and 
Adams (1989). These materials can be fabricated in both unidirectional and multidirectional 
laminate form, and can attain strengths of 1000 MPa (140 ksi) and ultimate strains of over 
1 %. Fracture toughness, as determined by a notched beam method, is more than five times 
that of the monolithic ceramic, Brennan and Prewo (1982). 

The micromechanics of stress transfer and fracture have been studied experimentally 
and analytically by many investigators for the case of unidirectional composites, starting 
with the pioneering work by Aveston et al. (1971) and Aveston and Kelly (1973). Fun- 
damental approaches used include shear lag or stress transfer models and fracture mechanics 
with stress or energy fracture criteria. Failure mechanisms in a SiC/LAS unidirectional 
composite under longitudinal loading have been observed and analyzed by Marshall and 
Evans (1985, 1988) and Marshall et al. (1985). Further analytical studies were described 
by Budiansky et al. (1986), Hsueh (1988), Charalambides and Evans (1989), McCartney 
(1989), Hutchinson and Jenson (1990), Zok and Spearing (1992) and Weitsman and Zhu 
(1993). The authors have reported both experimental and analytical investigations of a 
longitudinally and transversely loaded unidirectional SiC/CAS composite; see Daniel et al. 
(1989a,b, 1992, 1993) and Lee and Daniel (1992). Most studies to date on the behavior of 
composites under transverse loading are analytical, such as those by Hashin (1983), Benven- 
iste (1985) and Achenbach and Zhu (1990). 
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The problem of crossply laminates has been studied extensively for polymer-matrix 
composites. The primary failure mechanism in these composites is transverse matrix crack- 
ing in the 90° layer reaching a limiting crack density. This is followed by longitudinal matrix 
cracking in the 0° layers, local delaminations at the intersections of matrix cracks and, 
finally, fiber fractures in the 0° layer leading to ultimate failure, Daniel et al. (1988). In the 
case of brittle-matrix composites the type, sequence and interaction of failure mechanisms 
are different and characteristic of the constituent material properties. Some experimental 
work on crossply ceramic-matrix composites has been reported by Sbaizero and Evans 
(1986). They tested symmetric [0/90]s SiC/LAS laminates in tension and bending. However, 
the observed failure modes were not easily explained. The initial delamination failure 
observed would only be possible near free edges in the case of a material with very low 
interlaminar shear strength. The orientation of the transverse ply cracks could only be 
explained by assuming compressive residual stresses in the 90° layers. Subsequent work on 
crossply laminates dealt with a fracture mechanics model of a delamination crack formed 
at the tip of a notch cutting through 0C and 90° layers, see Sbaizero et al. (1990) and 
Charalambides (1991). Mall and Kim (1992) also conducted experimental investigations 
of failure mechanisms in SiC/CAS laminates. They observed that initial failure consisted 
of matrix microcracks occurring and growing in all plies in a random manner. 

This paper deals with a systematic investigation of the failure mechanisms, their growth 
and interactions in a crossply SiC/CAS laminate under uniaxial tension. It represents the 
first systematic experimental/analytical study of a crossply laminate with brittle matrix. 
Previous experimental work mentioned before reported random or other edge-dominated 
failure mechanisms with no clear trends. The failure mechanisms observed and recorded in 
the present study are substantially different from those reported before and show a clear 
and systematic trend. The initial stages of failure in each layer are interpreted on the 
basis of the failure micromechanics of the unidirectional material under longitudinal and 
transverse loading. The interaction of failure mechanisms in the 0° and 90° layers and the 
later stages of damage are explained on the basis of classical lamination theory as well as 
on damage models available for crossply laminates. The various failure mechanisms and 
damage states were correlated with the overall mechanical behavior of the laminate. The 
main contribution of this paper lies in the integration of the micromechanics of brittle 
matrix single layers and the macromechanics of a crossply laminate in predicting and 
interpreting the type and sequence of failure mechanisms and their interaction. 

2. EXPERIMENTAL PROCEDURE 

The material investigated was SiC/CAS, calcium aluminosilicate glass-ceramic 
reinforced with silicon carbide fibers, manufactured by Corning Glass Works. The fiber is 
silicon carbide yarn known as Nicalon (Nippon Carbon Co.). This fiber is available in 
continuous length tows with an average diameter of 15 /(in. The composite material for this 
study was obtained in the form of unidirectional and f0/9()]2s and [0/90,]s crossply laminates. 

The unidirectional material was characterized first to obtain average physical and 
mechanical properties. Unidirectional specimens instrumented with strain gages were tested 
under longitudinal and transverse tensile loading in a servohydraulic testing machine. 

The macroscopic response of the crossply laminates was measured by testing specimens 
under axial tension. The specimens were 15.2 cm (6 in.) long and 1.27 cm (0.5 in.) wide. 
They were tabbed with 3.81 cm (1.5 in.) long crossply glass/epoxy tabs. These specimens 
were tested in a servohydraulic testing machine (Instron) using an extensometer to monitor 
strain to failure. 

Failure mechanisms were monitored by testing smaller crossply coupons under the 
microscope with a specially designed fixture. The specimens were 76 mm (3 in.) long and 
12.7 mm (0.5 in.) wide coupons. Potting epoxy was cast around these coupons to help in 
subsequent polishing and loading of the specimen. One edge of the specimen was polished 
for microscopic observations. 
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Fig. 1. Setup for microscopic observation of failure mechanisms in composite specimens under load 

A special loading fixture was designed and built for loading the specimens under the 
microscope (Fig. 1); see Daniel et al. (1989a,b). Load was applied and controlled by means 
of a pneumatic cylinder. The specimen with the grips attached was mounted onto a react.on 
frame attached to one end of the pneumatic cylinder. One end of the specimen was connected 
to the moving piston while the other end was reacted at the other end of the react.on frame 
through a strain gage load cell. The entire assembly, including air cylinder, reaction frame, 
specimen with grips and load cell, was suspended with a counterweight from a movable 
upright frame. Thus, any part of the loaded specimen could be moved to the stage of the 
microscope without any weight or force exerted on the microscope. 

Two types of tests were conducted, continuous and intermittent loading tests. In the 
first type, loading is applied continuously to failure. A specific area of the specimen is 
observed through the microscope and recorded by a video camera. This type of loading 
yields a continuous stress-strain curve not affected by stress relaxation, as is the case during 
intermittent loading. However, only one small area of the specimen is being monitored and 
many interesting phenomena occurring outside the field of view are missed. 

In the second type of test, loading is applied in steps. The stress and strain in the 
specimen are recorded in the beginning and at the end of each loading step. Photo- 
micrographs are taken at different areas of the specimen while the strain is held constant 
One problem in this type of testing is stress relaxation during the holding period, which 
becomes more pronounced as damage progresses. 

3. RESULTS 

Material characterization . 
Some basic properties of the matrix and fiber constituents obtained from the literature 

and from previous tests are tabulated in Table 1. 

Table 1. Constituent material properties 

Property CAS matrixf SiC fiber} 

Maximum use 
temperature, "C (°F) 

Fiber diameter (/an) 
Density (gcm~J) 
Coefficient of thermal 

expansion, IO~6oC~' 
Elastic modulus, 

GPa (106 psi) 
Tensile strength, 

MPa (ksi) 

(10-6oF-') 

1350(2460) 

2.8 

5.0 (2.8) 

98 (14.2) 
124(18) 

(flexural) 

1300(2370) 
15 

2.6 

3.2(1.8)-4.9(2.7) 

170(24.6) 

1930 (280) 

t Larsen and Adams (1989). 
|Prewo and Brennan (1982), Daniel et al. (1989). 
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Fig. 2. Stress-strain curves to failure of unidirectional SiC/CAS composite under longitudinal and 
transverse tension. 

Examination of photomicrographs of transverse cross-sections showed that the fiber 
diameter ranges between 8 and 20 /mi, with a median value of 15 /mi. The fiber distribution 
is nonuniform with an average fiber volume ratio of Ff= 0.39. A low degree of porosity 
was measured (Kv= 0.01). 

Typical stress-strain curves to failure of the unidirectional composite under longi- 
tudinal and transverse tension are shown in Fig. 2. Basic properties obtained from such 
macromechanical tests of the unidirectional SiC/CAS composite are tabulated in Table 2. 

Damage initiation and development in 90° layer 
The first stage of damage development, consisting of microcracking in the 90° layers, 

was studied by testing [0/90]2s crossply laminates under the microscope; see Daniel et al. 
(1989a,b).'The first microcracks originated at the fiber-matrix interface and were nearly 
normal to the interface, which indicates that failure is caused by the circumferential tensile 
stress in the matrix. The randomness of the fiber packing makes it difficult to draw 
conclusions. However, some general patterns can be identified. 

When the fibers are closely packed, usually in a near hexagonal array, radial cracks 
initiate at approximately 45° from the loading axis. An analysis for a closely packed 
hexagonal array of fibers showed that for a low stiffness interphase, the peak circumferential 
stress is the critical one and it occurs near the 45° location, Achenbach and.Zhu (1990). 
This of course leads to radial cracking at this location, as observed experimentally. 

When fibers are farther apart and are surrounded by a relatively large volume of 
matrix, radial cracks occur at approximately 90° from the loading axis. For a low stiffness 

Table 2. Measured properties of SiC/CAS unidirectional composite 

Property Value 

Fiber volume ratio, Vt 

Ply thickness, (, mm (in.) 
Longitudinal modulus, £,, GPa (Msi) 
Transverse modulus, E2, GPa (Msi) 
In-plane shear modulus, Gl2, GPa (Msi) 
Out-of-plane shear modulus, G23, GPa (Msi) 
Major Poisson's ratio, v,2 

Longitudinal tensile strength, F,„ MPa (ksi) 
Transverse tensile strength, f2i. MPa (ksi) 
Longitudinal ultimate tensile strain, t", 
Transverse ultimate tensile strain, tj, 
Longitudinal coefficient of thermal expansion, 

«„/«"K.-'dje-F"1) 
Transverse coefficient of thermal expansion, 

a2,/j£°K.-'(/i£°F"1) 
Out-of-plane coefficient of thermal expansion, 

<x3> /i£°K.-'0'8°F'') 

0.39 
0.38(0.015) 
127(18.4) 
112(16.2) 
52 (7.5) 
32 (4.7) 
0.18 
448 (65) 
28(4) 
9xl0"3 

2.5x10-" 

4.05 (2.25) 

4.23 (2.35) 

4.32 (2.40) 
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o,    a 

Fig. 3. Development of failure mechanisms in transversely loaded ceramic matrix composite, 
(a) Initial radial cracks around closely-packed fibers, (b) Initial radial cracks around isolated fibers, 
(c) Interfacial cracks, (d) Interconnection of radial and interfacial cracks and formation of macrocracks. 

interphase the circumferential stress at the 90° location becomes critical, resulting in the 
observed radial cracks, Daniel et al. (1989). 

As the load increases, a new failure mechanism develops, consisting of interface cracks 
in the area along the loading axis over an arc 20 about the 0° point with 6 < 45°. These 
interface cracks are not immediately connected with the radial cracks developed earlier. 
Additional radial cracks may develop at this stage of damage development, and then, radial 
and interfacial cracks' are connected to form a long continuous crack in the transverse layer. 
The various failure mechanisms and their sequence are illustrated schematically in Fig. 3. 

The influence of these failure mechanisms on the stress-strain behavior of the [0/90]2s 

crossply laminate is shown in Fig. 4. The laminate behaves linearly up to an applied stress 
of 27.6 MPa (4 ksi) when the first radial cracks appear in the matrix. This causes a sudden 
drop in stiffness (secant modulus). At a higher applied stress, 32.4 MPa (4.7 ksi), interfacial 
cracking occurs causing another sudden, but smaller drop in stiffness. The interconnection 
of radial and interfacial cracks starts at a higher stress (36.6 MPa; 5.3 ksi) and progresses 
more gradually to the formation of continuous macrocracks, resulting in similarly gradual 
reduction in laminate stiffness. Similar stiffness reductions have been predicted by Zhu and 
Achenbach (1991) for a transversely loaded composite of the same properties, undergoing 
the same failure process. 

The stiffness reductions illustrated in Fig. 4 are more pronounced in this test due to 
creep effects. The loading was applied intermittently over a relatively long period (more 

I 
I 

J2 Ä-6 
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35 
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/^/       ^Local connections 
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■40„ 
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20 /*     ^Radial crack Initiation 
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Fig. 4. Stress-strain curve of [0/90]2s crossply laminate with corresponding stages of damage devel- 
opment in transverse layer. 
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Fig. 5. Stress-strain curve of [0/90,], SiC/CAS crossply laminate under uniaxial tension. 

than 30 min) to allow for photomicrographic recording of the various stages of damage 
development. The first continuous (across the 90° layer) macrocracks were formed at an 
applied stress of approximately 40 MPa (5.8 ksi), which corresponds to an axial stress of 
a2 = 38 MPa (5.5 ksi) in the 90° layer. The in situ lamina strength is comparable to the 
value measured by Mall and Kim (1992) and is higher than the transverse tensile strength 
F2t = 28 (4 ksi) measured from a 90° transverse tensile test. Continued loading increases the 
number of macrocracks up to a saturation density, corresponding to a minimum macrocrack 
spacing of the order of the 90° layer thickness. 

Figure 5 shows a stress-strain curve for a [0/90^ crossply laminate under uniaxial 
tension. Microcracking in the 90° layer (layer 2) started at an applied strain of approxi- 
mately 0.025%. Transverse macrocracks reached a minimum crack spacing of 0.65 mm 
(0.0255 in.), comparable to the layer thickness of 0.68 mm (0.027 in.), at an applied stress 
of approximately 69 MPa (10 ksi), corresponding to a strain of approximately 0.12%. 

The initial modulus in the linear region is 

Ex = H7GPa(16.9Msi), 

which agrees with the calculated laminate modulus. The reduced secant modulus at the 
point of crack saturation (äx = 69 MPa, E,= 0.12%) is 

E'x= 58GPa(8.3Msi). 

At this stage of damage development, corresponding to the proportional limit of the 
stress-strain response of the 0Ü layer (Fig. 2), no appreciable damage has occurred in the 
0° layer (layer 1). Simple lamination analysis gives the following axial moduli and average 
axial stresses in the two layers: 

£■, = 127GPa(18.4Msi) 

E'2 = 22.8 GPa (3.3 Msi) 

ff,, = 152 MPa (22 ksi) 

a2x = 27.6 MPa (4.0 ksi), 

where E,= initial modulus of 0° layer, E'2 = degraded modulus of 90° layer, aXx, a2x = 
average axial (x-direction) stresses in layers 1 and 2, respectively. 

Damage initiation and development in 0° layer 
Prior investigations have shown that, in a unidirectional SiC/CAS composite under 

longitudinal tension, transverse matrix cracking starts at an applied strain of approximately 
0.1%, see Daniel et al. (1993). This value is slightly below the proportional limit of the 
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Fig. 6. Matrix cracking in 0,J-ply following saturation of cracking in W-ply. 

Fig. 7. Interconnection of 0"-ply and 90°-ply macrocracks (formation of "delta" pattern). 

347 

Fig. 8. Longitudinal cracking in 90°-ply. 
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Fig. 9. Final stages of damage consisting of liber fractures and debonding in 0" layer and crack 
opening in 90' layer, (a) av = 199 MPa (28.9 ksi), (b) sx = 210 MPa (30.4 ksi). 
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longitudinal stress-strain curve of Fig. 2. Thus, damage in this layer starts near the satu- 
ration point of cracking in the 90° layer. 

The initial failure in the 0° layer consists of transverse matrix cracks increasing in 
density with applied stress up to a minimum crack spacing of approx. 120 /mi (0.0047 in.) 
at a stress of 138 MPa (20 ksi) and a strain of 0.37%, as shown in Fig. 6. This is close to 
the minimum crack spacing observed before in a unidirectional specimen under longitudinal 
loading and corresponds to eight fiber diameters, Daniel et al. (1992). 

At this stage of damage development (dx= 138 MPa, ex= 0.37%) the reduced secant 
modulus is 

E'x = 37.3 GPa (5.4 Msi). 

Assuming no increase in the average axial stress carried by the damaged 90° layer, the 
following axial moduli and average axial stresses are obtained in each of the two layers: 

E\ =97 GPa (14.0 Msi) 

E\ = 7.5 GPa (1.08 Msi) 

au = 359 MPa (52 ksi) 

aJX = 27.6 MPa (4.0 ksi). 

The further reduction in the layer 2 modulus, while its average axial stress remains 
constant, is attributed to the increased opening displacements in layer 2 macrocracks, 
following crack formation and multiplication in layer 1. 

One important observation is that the in situ reduced axial modulus E\ of layer 1 is 
appreciably higher than the corresponding modulus of the unidirectional material at the 
same stage of damage development, i.e. saturation of matrix cracks at a strain of e, = 0.37% 
(see Fig. 2). This could be attributed to the fact that large segments of layer 2 remain 
adhered to layer 1 and bridge the matrix cracks in layer 1, thereby increasing its effective 
in situ stiffness. 

At the same point of damage development, there is evidence that extensive fiber-matrix 
debonding occurs in this layer near and after matrix crack saturation, see Luo et al. (1994), 
Wooh and Daniel (1994). As in the case of the unidirectional material under longitudinal 
loading, isolated fiber breaks were observed before saturation of transverse matrix cracking 
in the 0° layers. 

Damage interaction between 0° and 90° layers 
As the applied stress is increased above 138 MPa (20 ksi), the matrix cracks in the 0° 

layer begin to propagate into the 90° layer and connect with the macrocracks already 
developed in that layer. Because of the difference in crack spacings in the two layers, several 
cracks in the 0° layer connect with each crack in the 90° layer forming a "delta-like" pattern 
in the 90° layer near the interface (Fig. 7). Each macrocrack in the 90° layer corresponds 
to five to six transverse cracks in the 0° layer. 

With increasing load, axial (in the loading direction) cracks are generated in the 90° 
layer near the interface with the 0° layer (Fig. 8). These cracks (or delaminations) may be 
due to high interlaminar shear stresses developed at the tips of the transverse macrocracks 
in layer 2, and/or high interlaminar normal and shear stresses existing near the edges of 
crossply laminates (edge effect). Additional transverse cracks also appear in layer 2. 

In the final stages of damage development extensive fiber-matrix debonding in layer 1 
is accompanied by fiber fractures and sliding. This is manifested by large crack openings in 
layer 1 and even larger (more than five times larger) crack openings in layer 2 (Fig. 9). 

SAS 32:3/4-F 
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Fig. 10. Stress-strain behavior of [0/90,]s laminate with corresponding stages of damage devel- 
opment. 

The various failure mechanisms and the entire process of damage evolution are cor- 
related with the macroscopic stress-strain curve of the [0/902]s laminate in Fig. 10. The 
effects of the various failure mechanisms on stiffness degradation are illustrated. 

Ultimate failure occurred at an applied stress of over 220 MPa (32 ksi), which cor- 
responds to an in situ longitudinal strength of over 607 MPa (88 ksi) in the 0° layer. This 
is much higher than any measured longitudinal strength of the unidirectional material and 
clearly shows the synergistic effect of the 0° and 90° layers of the laminate. 

4. ANALYTICAL PREDICTIONS 

The formation of transverse macrocracks in the 90° layer of a crossply laminate has 
been discussed by several investigators, including Reifsnider et al. (1983), Talreja (1985), 
Hashin (1985), Ogin et al. (1985), Laws and Dvorak (1988) and Lee and Daniel (1990). 
The analyses above were aimed primarily at polymer matrix composites, but since they are 
linear they can be applied to ceramic matrix composites as well. The analytical model 
described by Lee and Daniel (1990) was used here to explain the observed phenomena. 
This model was shown to give accurate predictions of stiffness degradation and crack 
spacing in the 90° layer. 

Under axial loading the state of stress in each layer is essentially uniaxial. The first 
transverse macrocracks in layer 2 occur when the axial (x-axis) stress in that layer reaches 
the strength of the layer, i.e. the transverse tensile strength, F2l, of the unidirectional material 
(Fig. 11). As discussed before, the in situ transverse strength of the layer is somewhat higher 
than the value measured by testing an unsupported unidirectional layer. The applied 
laminate stress 5X at crack initiation in layer 2 is 

A 0"Layer 
jm 90° Layer 

X- 

Fig. 11. Element of cracked crossply laminate under axial loading. 



I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

where 

£ = £,A,+£2/i2 

Failure mechanisms and damage evolution 

^(F2t-<x2,), 
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ht+h2 

EUE2 = longitudinal and transverse moduli of undamaged unidirectional 
material, respectively, 

F2t = transverse (to the fibers) tensile strength of unidirectional material, 

a2x = residual axial stress in 90° layer. 

The above residual stress is approximately equal to 7 MPa (1 ksi) for a 1100°C (2000°F) 
temperature difference between processing and room temperature. Substituting the known 
material properties and the value F2,= 38 MPa (5.5 ksi) for the transverse tensile strength 
in eqn (1), we obtain a stress of 

8X = 28.8 MPa (4.2 ksi), 

which agrees with the experimental observation of initiation of transverse macrocracks in 
the 90° layer (Fig. 5). 

An element of the laminate with the 90° layer cracked under axial loading is shown in 
Fig. 11. Of particular significance to damage development in the laminate are the stress 
distributions in the layers and the stiffness reductions. The stress distributions in the layers 
between two transverse cracks in the 90° layer are given by Lee and Daniel (1990) 

ffi, 
Ex 

Eih-, cosh a 

1 + 
Eihi cosh a — 

*v + 

cosh a 

cosh a — 
(2) 

cosh a| — — x 

cosh a 
li 

Öx + 02x (3) 

T;=  -Cth2\Y
ax + alx 

sinh a | — — x 

cosh a 
h 

(4) 

where <rix, a2x= average (through the thickness) axial stresses in 0° and 90° layers, respec- 
tively, ij= interlaminar shear stress at interface between 0° and 90° layers, 

a = 
\hl+h2)Ex      3Gl2G2i 

hih2E{E2   h,G2i + h2Gn 

1/2 

(5) 

Gt2, G2J= in-plane and out-of-plane shear moduli of undamaged unidirectional material, 
«7ru'= axial residual stress in 0° layer (calculated as -13 MPa), l2= crack spacing in 90° 

layer. 
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This crack spacing decreases with load up to a minimum characteristic value. Exper- 
imentally, a minimum crack spacing of 0.65 mm (0.0255 in.) was observed at an applied 
stress of 9X = 69 MPa (10 ksi), as mentioned before. The predicted crack spacing at this 
stress can be obtained by setting Sx= 69 MPa (10 ksi), a2x = F2t= 38 MPa (5.5 ksi) and 
x = l2/2 (midpoint between cracks) in eqn (3). Then, from eqn (3) we obtain 

l2 = -cosh  {t\ (6) 

where 

1 = 
I- 

F2l 

E2 
■6x+°2x 

For the numerical values above we obtain 

(/2)min = 0.68 mm (0.027 in.). 

Expressions for the reduced axial stiffness E'2 of the 90° layer and E'x of the laminate 
are given as a function of crack spacing as follows, Lee and Daniel (1990): 

(\-ß)(E2öx+£xa2x)  
(7) 

and 

Cl   V            1-4. ]"'• (8) 

where 

„ 2 .    fal2 ^ = — tanh  -- 
a/2 V 2 

At the applied stress level of 69 MPa (10 ksi), where transverse crack saturation was 
noticed, but before any substantial damage occurred in the 0° layer, the 90° layer and 
laminate moduli are calculated as 

E2 = 19GPa(2.8Msi) 

E'x= 55GPa(8.0Msi), 

which are in good agreement with the experimental values of E'2 = 22.8 GPa (3.3 Msi) 
and E'x = 58 GPa (8.3 Msi) mentioned before. 

The average stress carried by the 0° layer then, is 

aix^o\x+~--äx = 146 MPa (21.1 ksi). 

The stress necessary to initiate transverse matrix cracking in the 0° layer is 
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H'.H 

Ti   -• 

h = 6/, 
Fig. 12. Element of laminate with both layers cracked up to their saturation levels. 

ff\x = Tr-(Am- ■o'mx)- 

where Em = matrix modulus, Fml = matrix tensile strength, a'mx = axial micro-residual stress 
in matrix of 0° layer. 

Neglecting the counteracting residual stresses, tensile micro-residual stress aT
mx and 

compressive macro-residual stress a'lx, we obtain the value 

alx S 154 MPa (22.3 ksi). 

This shows that crack initiation takes place in the 0° layer at a slightly higher load level 
than that at which crack saturation occurs in the 90° layer. This also corresponds to the 
observed proportional limit of the longitudinal stress-strain curve (Fig. 2). 

Cracking continues in the 0° layer up to a saturation crack density where (/|)min= 0.120 
mm (0.0047 in.), which is one-sixth to one-fifth of (/2)min. An element of the laminate with 
both layers cracked up to their saturation levels is shown in Fig. 12. A subelement of the 
90° layer at the interface with the 0" layer is subjected primarily to the normal axial stress 
a2x and interlaminar shear stress xx. These stresses result in a tensile principal stress at an 
angle that would explain the formation of branch cracks in the observed "delta" pattern. 

5. SUMMARY AND CONCLUSIONS 

The behavior of crossply ceramic-matrix composites under axial tensile loading was 
studied. The material investigated was SiC/CAS, calcium aluminosilicate glass-ceramic 
reinforced with silicon carbide (Nicalon) fibers. Specimens were loaded under the micro- 
scope and the various failure mechanisms, their sequence, interaction and overall damage 
development were observed in real time and recorded. 

The first stage of damage development consists of microcracks in the 90° layer, which 
then develop into transverse macrocracks. These macrocracks increase in density up to a 
saturation limit, with a minimum crack spacing approximately equal to the 90° layer 
thickness. Thereafter, transverse matrix cracks are generated in the 0° layer. These cracks 
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also increase in density up to a minimum crack spacing of approximately eight fiber 
diameters, [n the third stage of damage development there is an interconnection of the two 
sets of cracks. Several of the denser 0° layer cracks connect with each of the 90° layer cracks 
in a delta-like pattern. This is finally followed by delaminations and additional cracking in 
the 90° layer prior to ultimate failure. 

Damage development was correlated with the macroscopic stress-strain response of 
the unidirectional material under longitudinal and transverse loading and of the crossply 
laminate. It was noticed that first-ply failure in the 90° layer occurs at a higher layer stress 
than the transverse tensile strength of the unidirectional material. This may be attributed 
to the constraining effects of the 0° layer which tend to increase the in situ transverse tensile 
strength of the 90° layer. 

Following crack saturation in the 90° layer, cracking initiated and increased in the 0° 
layers at approximately the same strain levels where similar cracking was observed in the 
unidirectional material under longitudinal loading. However, the 0° layer stresses at the 
various stages of damage development, were higher than corresponding stress levels in the 
0° unidirectional specimen for the same damage. This was explained as a stiffening or 
strengthening effect of the 0° layers caused by the attached 90° layer. Ultimate failure of 
the laminate clearly showed the synergistic effects of the 0° and 90° layers of the laminate. 

Damage development in the 90° layer was compared with analytical predictions. A 
model developed previously for crossply graphite/epoxy composites was used to predict 
cracking in the 90° layer and stiffness degradation, both in the 90° layer and in the overall 
laminate. The predictions were in very good agreement with experimental observations. 

It was shown that the overall damage development is characterized by different scales 
at different stages. The relevant scales are fiber diameter and fiber spacing for failure 
initiation in the 90° layer; layer thickness for damage saturation in the 90° layer; and fiber 
diameter for matrix cracking in the 0° layer. Finally, there is a scale crossing phenomenon 
in the interaction between the damage in the 90° and 0° layers. 
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